Publication Cover
Applicable Analysis
An International Journal
Volume 100, 2021 - Issue 7
293
Views
17
CrossRef citations to date
0
Altmetric
Articles

Bilinear form and solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves

, , &
Pages 1544-1556 | Received 31 Mar 2019, Accepted 01 Aug 2019, Published online: 20 Aug 2019

References

  • Vreugdenhil CB. Numerical methods for shallow-water flow. London: Springer; 2013.
  • Ivanov SK, Kamchatnov AM. Evolution of wave pulses in fully nonlinear shallow-water theory. Phys Fluids. 2019;31:057102.
  • Ablowitz MJ. Nonlinear dispersive waves: asymptotic analysis and solitons. Combridge: Combridge Univ. Press; 2011.
  • Ablowitz MJ, Clarkson PA. Solitons, nonlinear evolution equations and inverse scattering. Combridge: Combridge Univ. Press; 1991.
  • Zhang CR, Tian B, Liu L, et al. Vector breathers with the negatively coherent coupling in a weakly birefringent fiber. Wave Motion. 2019;84:68–80. doi: 10.1016/j.wavemoti.2018.09.003
  • Du XX, Tian B, Wu XY, et al. Lie group analysis, analytic solutions and conservation laws of the (3 + 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma. Eur Phys J Plus. 2018;133:378.
  • Camassa R, Holm DD. An integrable shallow water equation with peaked solitons. Phys Rev Lett. 1993;71:1661. doi: 10.1103/PhysRevLett.71.1661
  • Hu CC, Tian B, Wu XY, et al. Lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in a fluid. Chin J Phys. 2018;56:2395–2403. doi: 10.1016/j.cjph.2018.06.021
  • Hu CC, Tian B, Wu XY, et al. Mixed lump-kink and rogue wave-kink solutions for a (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics. Eur Phys J Plus. 2018;133:40.
  • Gao XY. Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl Math Lett. 2017;73:143–149. doi: 10.1016/j.aml.2017.03.020
  • Zhao XH, Tian B, Xie XY, et al. Solitons, Backlund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth. Wave Random Complex. 2018;28:356–366. doi: 10.1080/17455030.2017.1348645
  • Yuan YQ, Tian B, Liu L, et al. Solitons for the (2+1)-dimensional Konopelchenko-Dubrovsky equations. J Math Anal Appl. 2018;460:476–486. doi: 10.1016/j.jmaa.2017.11.024
  • Gao XY. Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl Math Lett. 2019;91:165–172. doi: 10.1016/j.aml.2018.11.020
  • Zhao XH, Tian B, Guo YJ, et al. Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves. Mod Phys Lett B. 2018;32:1750268.
  • Yin HM, Tian B, Chai J, et al. Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma. Appl Math Lett. 2018;82:126–131. doi: 10.1016/j.aml.2017.12.005
  • Yin HM, Tian B, Chai J, et al. Numerical solutions of a variable-coefficient nonlinear Schrödinger equation for an inhomogeneous optical fiber. Comput Math Appl. 2018;76:1827–1836. doi: 10.1016/j.camwa.2018.06.025
  • Chen SS, Tian B, Liu L, et al. Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system. Chaos Solitons Fract. 2019;118:337–346. doi: 10.1016/j.chaos.2018.11.010
  • Wang M, Tian B, Sun Y, et al. Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin J Phys. 2019;60:440–449. doi: 10.1016/j.cjph.2019.05.001
  • Chen SS, Tian B, Sun Y, et al. Generalized Darboux transformations, rogue waves, and modulation instability for the coherently coupled nonlinear Schrödinger equations in nonlinear optics. Ann Phys. 2019;in press. doi:10.1002/andp.201900011.
  • Xu T, Chen Y. Darboux transformation of the coupled nonisospectral Gross–Pitaevskii system and its multi-component generalization. Commun Nonlinear Sci Numer Simulat. 2018;57:276–289. doi: 10.1016/j.cnsns.2017.09.009
  • Guo BL, Ling LM, Liu QP. Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys Rev E. 2012;85:026607.
  • Du Z, Tian B, Chai HP, et al. Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber. Chaos Soliton Fract. 2018;109:90–98. doi: 10.1016/j.chaos.2018.02.017
  • Zhang CR, Tian B, Wu XY, et al. Rogue waves and solitons of the coherently-coupled nonlinear Schrödinger equations with the positive coherent coupling. Phys Scr. 2018;93:095202. doi: 10.1088/1402-4896/aacfc6
  • Du Z, Tian B, Chai HP, et al. Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein. Commun Nonlinear Sci Numer Simulat. 2019;67:49–59. doi: 10.1016/j.cnsns.2018.06.014
  • Zhang XE, Chen Y. Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation. Commun Nonlinear Sci Numer Simulat. 2017;52:24–31. doi: 10.1016/j.cnsns.2017.03.021
  • Ma WX. Lump solutions to the Kadomtsev–Petviashvili equation. Phys Lett A. 2015;379:1975–1978. doi: 10.1016/j.physleta.2015.06.061
  • Sun B, Wazwaz AM. Interaction of lumps and dark solitons in the Mel'nikov equation. Nonliear Dyn. 2018;92:2049–2059. doi: 10.1007/s11071-018-4180-7
  • Rao JG, Porsezian K, He JS. Semi-rational solutions of the third-type Davey-Stewartson equation. Chaos. 2017;27:083115. doi: 10.1063/1.4999083
  • Rao JG, Porsezian K, He JS, et al. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system. Proc R Soc A. 2018;474:20170627. doi: 10.1098/rspa.2017.0627
  • Rao JG, Mihalache D, Cheng Y, et al. Lump-soliton solutions to the Fokas system. Phys Lett A. 2019;383:1138–1142. doi: 10.1016/j.physleta.2018.12.045
  • Yuan YQ, Tian B, Chai HP, et al. Vector semirational rogue waves for a coupled nonlinear Schrödinger system in a birefringent fiber. Appl Math Lett. 2019;87:50–56. doi: 10.1016/j.aml.2018.07.007
  • Geng XG. Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations. J Phys A. 2003;36:2289–2303. doi: 10.1088/0305-4470/36/9/307
  • Zhaqilao. Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation. Phys Lett A. 2013;377:3021–3026. doi: 10.1016/j.physleta.2013.09.023
  • Zhang HQ, Ma WX. Resonant multiple wave solutions for a (3+1)-dimensional nonlinear evolution equation by linear superposition principle. Comput Math Appl. 2017;73:2339–2343. doi: 10.1016/j.camwa.2017.03.014
  • Geng XG, Ma YL. N-soliton solution and its Wronskian form of a -dimensional nonlinear evolution equation. Phys Lett A. 2007;369:285–289. doi: 10.1016/j.physleta.2007.04.099
  • Zhaqilao, Li ZB. Positon, negaton, soliton and complexiton solutions to a four-dimensional nonlinear evolution equation. Mod Phys Lett B. 2009;23:2971–2991. doi: 10.1142/S0217984909021053
  • Shi YB, Zhang Y. Rogue waves of a (3+1)-dimensional nonlinear evolution equation. Commun Nonlinear Sci Numer Simulat. 2017;44:120–129. doi: 10.1016/j.cnsns.2016.07.021
  • Wu JP. A bilinear Bäcklund transformation and explicit solutions for a (3+1)-dimensional soliton equation. Chin Phys Lett. 2008;25:4192–4194. doi: 10.1088/0256-307X/25/12/002
  • Yin YH, Ma WX, Liu JG, et al. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput Math Appl. 2018;76:1275–1283. doi: 10.1016/j.camwa.2018.06.020
  • Wu JP, Geng XG. Grammian determinant solution and Pfaffianization for a (3+1)-dimensional soliton equation. Commun Theor Phys. 2009;52:791–794. doi: 10.1088/0253-6102/52/5/05
  • Wazwaz AM. A variety of distinct kinds of multiple soliton solutions for a (3+1)-dimensional nonlinear evolution equation. Math Methods Appl Sci. 2013;36:349–357. doi: 10.1002/mma.2600
  • Liu N, Liu YS. New multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation. Comput Math Appl. 2016;71:1645–1654. doi: 10.1016/j.camwa.2016.03.012
  • Tang YN, Tao SQ, Zhou ML, et al. Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 2017;89:429–442. doi: 10.1007/s11071-017-3462-9
  • Pu JC, Hu HC. Mixed lump-soliton solutions of the (3+1)-dimensional soliton equation. Appl Math Lett. 2018;85:77–81. doi: 10.1016/j.aml.2018.05.017
  • Liu W, Zheng XX, Wang C, et al. Fission and fusion collision of high-order lumps and solitons in a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 2019;96:2463–2473. doi: 10.1007/s11071-019-04935-5
  • Ohta Y. Dark soliton solution of Sasa-Satsuma equation. AIP Conf Proc, Beijing, China; 2010. Vol. 1212. p. 114.
  • Ohta Y, Wang DS, Yang J. General N-dark-dark solitons in the coupled nonlinear Schrödinger equations. Stud Appl Math. 2011;127:345–371. doi: 10.1111/j.1467-9590.2011.00525.x
  • Ohta Y, Yang J. General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc R Soc A. 2012;468:1716–1740. doi: 10.1098/rspa.2011.0640
  • Hirota R. The direct method in soliton theory. Cambridge: Cambridge Univ. Press; 2004.
  • Jimbo M, Miwa T. Solitons and infinite dimensional Lie algebras. Publ Res Inst Math Sci. 1983;19:943–1001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.