Publication Cover
Applicable Analysis
An International Journal
Volume 100, 2021 - Issue 10
150
Views
3
CrossRef citations to date
0
Altmetric
Articles

A theoretical investigation of time-dependent Kohn–Sham equations: new proofs

, & ORCID Icon
Pages 2254-2273 | Received 06 Aug 2019, Accepted 08 Oct 2019, Published online: 18 Oct 2019

References

  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett. 1984;52:997–1000. doi: 10.1103/PhysRevLett.52.997
  • Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU. Time-dependent density functional theory, volume 706 of Lecture notes in physics. Berlin Heidelberg: Springer-Verlag; 2006.
  • Ruggenthaler M, Penz M, van Leeuwen R. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory. J Phys Condens Matter. 2015;27:203202. doi: 10.1088/0953-8984/27/20/203202
  • van Leeuwen R. Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett. 1999;82:3863–3866. doi: 10.1103/PhysRevLett.82.3863
  • Borzì A, Ciaramella G, Sprengel M. Formulation and numerical solution of quantum control problems. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2017.
  • Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A. OCTOPUS: a tool for the application of time-dependent density functional theory. Phys Status Solidi (b). 2006;243(11):2465–2488. doi: 10.1002/pssb.200642067
  • Castro A, Werschnik J, Gross EKU. Controlling the dynamics of many-electron systems from first principles: A combination of optimal control and time-dependent density-functional theory. Phys Rev Lett. 2012;109:153603. doi: 10.1103/PhysRevLett.109.153603
  • Sprengel M, Ciaramella G, Borzì A. A COKOSNUT code for the control of the time-dependent Kohn–Sham model. Comput Phys Commun. 2017;214:231–238. doi: 10.1016/j.cpc.2017.01.020
  • Sprengel M, Ciaramella G, Borzì A. Investigation of optimal control problems governed by a time-dependent Kohn–Sham model. J Dyn Control Syst. 2018;24(4):657–679. doi: 10.1007/s10883-017-9393-4
  • Cancés E, Le Bris C. On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics. Math Models Methods Appl Sci. 1999;9(7):963–990. doi: 10.1142/S0218202599000440
  • Cazenave T. Semilinear Schrödinger equations. Courant lecture notes in mathematics. Providence, Rhode Island: American Mathematical Society; 2003.
  • Jerome JW. Approximation of nonlinear evolution systems. Mathematics in science and engineering. New York: Elsevier Science; 1983.
  • Maspero A, Robert D. On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms. J Funct Anal. 2017;273(2):721–781. doi: 10.1016/j.jfa.2017.02.029
  • Jerome JW. Time dependent closed quantum systems: nonlinear Kohn–Sham potential operators and weak solutions. J Math Anal Appl. 2015;429(2):995–1006. doi: 10.1016/j.jmaa.2015.04.047
  • Jerome JW. Consistency of local density approximations and quantum corrections for time-dependent quantum systems. Appl Anal. 2019;0:1–21. doi: 10.1080/00036811.2019.1573988
  • Jerome JW, Polizzi E. Discretization of time-dependent quantum systems: real-time propagation of the evolution operator. Appl Anal. 2014;93:2574–2597. doi: 10.1080/00036811.2013.878863
  • Sprengel M, Ciaramella G, Borzì A. A theoretical investigation of time-dependent Kohn–Sham equations. SIAM J Math Anal. 2017;49(3):1681–1704. doi: 10.1137/15M1053517
  • Adams RA. Sobolev spaces. Oxford, London: Academic Press; 1970.
  • Ciarlet PG. Linear and nonlinear functional analysis with applications. Philadelphia: Society for Industrial and Applied Mathematics; 2013.
  • Evans LC. Partial differential equations, volume 19 of Graduate studies in mathematics, 2nd ed. Providence, RI: American Mathematical Society; 2010.
  • Grisvard P. Elliptic problems in nonsmooth domains. Classics in applied mathematics. Philadelphia: Society for Industrial and Applied Mathematics; 2011.
  • Gazzola HC, Grunau F, Sweers G. Polyharmonic boundary value problems. Lecture Notes in Mathematics. Springer; 2010.
  • Walter W. Ordinary differential equations. Graduate texts in mathematics. New York: Springer; 1998.
  • Boyer F, Fabrie P. Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. Applied mathematical sciences. New York: Springer; 2012.
  • Lions JL. Quelques Méthodes de Resolution des Problèmes aux Limites non Linéaires. Dunod. Paris: Gauthier-Villars; 1969.
  • Yserentant H. Regularity and approximability of electronic wave functions. Lecture notes in mathematics. Berlin Heidelberg: Springer; 2010.
  • Lieb EH, Loss M. Analysis. CRM proceedings & lecture notes. American Mathematical Society; 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.