Publication Cover
Applicable Analysis
An International Journal
Volume 100, 2021 - Issue 15
366
Views
7
CrossRef citations to date
0
Altmetric
Articles

Boundedness and global stability of a diffusive prey–predator model with prey-taxis

&
Pages 3259-3275 | Received 05 Jun 2019, Accepted 09 Jan 2020, Published online: 22 Jan 2020

References

  • Pang PYH, Wang MX. Strategy and stationary pattern in a three-species predator–prey model. J Differ Equ. 2004;200(2):245–273.
  • Du YH, Shi JP. A diffusive predator-prey model with a protection zone. J Differ Equ. 2006;229(1):63–91.
  • Du YH, Shi JP. Some recent results on diffusive predator-prey models in spatially heterogeneous environment. In Nonlinear dynamics and evolution equations. Providence, RI: Amer. Math. Soc.; 2006. p. 95–135. (Fields Inst. Commun., 48).
  • Yi FQ, Wei JJ, Shi JP. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J Differ Equ. 2009;246(5):1944–1977.
  • Wang JF, Shi JP, Wei JJ. Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey. J Differ Equ. 2011;251(4-5):1276–1304.
  • Cui RH, Shi JP, Wu BY. Strong Allee effect in a diffusive predator–prey system with a protection zone. J Differ Equ. 2014;256(1):108–129.
  • Guin LN, Acharya S. Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting. Nonlinear Dyn. 2017;88(2):1501–1533.
  • Buffoni G, Cassinari MP, Groppi M. Modelling of predator-prey trophic interactions. II. Three trophic levels. J Math Biol. 2007;54(5):623–644.
  • Li HL, Pang PYH, Wang MX. Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels. Discrete Contin Dyn Syst Ser B. 2012;17(1):127–152.
  • Li Y, Wang MX. Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels. Nonlinear Anal Real World Appl. 2013;14(3):1806–1816.
  • Medvinsky AB, Petrovskii SV, Tikhonova IA, et al. Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 2002;44(3):311–370.
  • Taylor AD. Metapopulations, dispersal, and predator-prey dynamics: an overview. Ecology. 1990;71:429–433.
  • Ainseba BE, Bendahmane M, Noussair A. A reaction-diffusion system modeling predator-prey with prey-taxis. Nonlinear Anal Real World Appl. 2008;9(5):2086–2105.
  • Kareiva P, Odell G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am Nat. 1987;130:233–270.
  • Lee JM, Hillen T, Lewis MA. Pattern formation in prey-taxis systems. J Biol Dyn. 2009;3(6):551–573.
  • Wu SN, Shi JP, Wu BY. Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J Differ Equ. 2016;260(7):5847–5874.
  • Xiang T. Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics. Nonlinear Anal Real World Appl. 2018;39:278–299.
  • Jin HY, Wang ZA. Global stability of prey-taxis systems. J Differ Equ. 2017;262(3):1257–1290.
  • Horstmann D, Winkler M. Boundedness vs. blow-up in a chemotaxis system. J Differ Equ. 2005;215(1):52–107.
  • Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J Differ Equ. 2010;248(12):2889–2905.
  • Winkler M. Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math Nachr. 2010;283(11):1664–1673.
  • Tao YS, Winkler M. Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z Angew Math Phys. 2015;66(5):2555–2573.
  • Amann H. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differ Integr Equ. 1990;3(1):13–75.
  • Amann H. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992). Stuttgart: Teubner; 1993. p. 9–126. (Teubner-Texte Math., 133).
  • Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa (3). 1959;13:115–162.
  • Barbălat I. Systèmes d'équations différentielles d'oscillations non linéaires. Rev Math Pures Appl. 1959;4:267–270.
  • Wang MX. Note on the Lyapunov functional method. Appl Math Lett. 2018;75:102–107.
  • Ni WJ, Shi JP, Wang MX. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model. J Differ Equ. 2018;264(11):6891–6932.
  • Bai XL, Winkler M. Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ Math J. 2016;65(2):553–583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.