Publication Cover
Applicable Analysis
An International Journal
Volume 101, 2022 - Issue 13
106
Views
4
CrossRef citations to date
0
Altmetric
Articles

Homoclinic orbits and Jacobi stability on the orbits of Maxwell–Bloch system

, , , &
Pages 4377-4396 | Received 31 Jul 2020, Accepted 10 Nov 2020, Published online: 02 Dec 2020

References

  • Arecchi FT. Chaos and generalized multistability in quantum optics. Phys Scr. 1985;9:85–92.
  • Chen H, Liu Y, Wei Z, et al. Dynamics at infinity and existence of singularly degenerate heteroclinic cycles in Maxwell–Bloch system. J Comput Nonlinear Dyn. 2020;15:101007.
  • Cândido MR, Llibre J, Valls C. New symmetric periodic solutions for the Maxwell–Bloch differential system. Math Phys Anal Geom. 2019;22:16.
  • Wei J, Wang X, Geng X. Periodic and rational solutions of the reduced Maxwell–Bloch equations. Commun Nonlinear Sci Numer Simul. 2018;59:1–14.
  • Liu L, Aybar OO, Romanovski VG, et al. Identifying weak foci and centers in the Maxwell–Bloch system. J Math Anal Appl. 2015;430:549–571.
  • Puta M. Integrability and geometric requantization of the Maxwell–Bloch equations. Bull Sci Math. 1998;122:243–250.
  • Wang L, Zhao X. Study on Hopf bifurcation for Maxwell–Bloch equation. J Zhejiang Normal Univ (Nat Sci). 2013;36:37–44.
  • Manassah JT. Numerical demonstration of high sensitivity to initial conditions in solutions of the complete Maxwell–Bloch equations for certain parameters. Phys Lett A. 2015;379:1091–1096.
  • Zuo DW. Modulation instability and breathers synchronization of the nonlinear Schrödinger Maxwell–Bloch equation. Appl Math Lett. 2018;79:182–186.
  • Hacinliyan AS, Kusbeyzi I, Aybar OO. Approximate solutions of Maxwell–Bloch equations and possible Lotka–Volterra type behavior. Nonlinear Dyn. 2010;62:17–26.
  • Puta M. On the Maxwell–Bloch equations with one control. C R Acad Sci Paris. 1994;56:679–683.
  • Lazureanu C. The real–valued Maxwell–Bloch equations with controls: from a Hamilton–Poisson system to a chaotic one. Int J Bifur Chaos. 2017;27:1750143.
  • Lazureanu C. On a Hamilton–Poisson approach of the Maxwell–Bloch equations with a control. Math Phys Anal Geom. 2017;20:22–23.
  • Puta M. Three-dimensional real-valued Maxwell–Bloch equations with controls. Int Insti Math Phys. 1994;178:2–16.
  • Melnikov VK. On the stability of the center for time periodic perturbation. Trans Moscow Math Soc. 1963;12:1–57.
  • Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcation of vector field. New York: Springer–Verlag; 1983. 150–156.
  • Wiggins S. Introduction to applied nonlinear dynamaical systems and Chaos. New York: Springer–Verlag; 1990. 608–615.
  • Wiggins S. Global Bifurcation and Chaos: analytical methods. New York: Springer–Verlag; 1988. 75–333.
  • Li T, Chen G. On homoclinic and heteroclinic orbits of Chen's system. Int J Bifur Chaos. 2006;16:3035–3041.
  • Tigan G, Constantinescu D. Heteroclinic orbits in the T and the Lü systems. Chaos Solitons Fract. 2009;42:20–23.
  • Tigan G, Llibre J. Heteroclinic, homoclinic and closed orbits in the Chen system. Internat J Bifur Chaos. 2016;26:1650072.
  • Wang H, Li X. Infinitely many heteroclinic orbits of a complex Lorenz system. Int J Bifur Chaos. 2017;27:1750110.
  • Pailis J, Takens F. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Gambridge: Gambridge University Press; 1993.
  • Li J, Zhao X, Liu Z. Generalized hamiltonian system theory and its application. Beijing: Science Press; 1994.
  • Liu Z. Perturbation Criterion of Chaos. Shanghai: Shanghai Science and Technology Education Press; 1994.
  • Wiggins S, Holmes P. Periodic orbits in slowly varying oscillators. SIAM J Math Anal. 1988;18:592–611.
  • Wiggins S, Holmes P. Homoclinic orbits in slowly varying oscillators. SIAM J Math Anal. 1987;18:612–629.
  • Kosambi DD. Parallelism and path-space. Math Zeitsch. 1933;37:613–818.
  • Cartan E. Observations sur lemémoire précédent. Math Z. 1933;37:619–622.
  • Chern SS. Sur la geometrie d'un systeme d'equations differentielles du second ordre. Bull Sci Math. 1939;63:206–212.
  • Yajima T, Yamasaki K. Jacobi stability for dynamical systems of two-dimensional second-order differential equations and application to overhead crane system. Int J Geome Metho Moder Phys. 2016;4:99–120.
  • Boehmer CG, Harko T, Sabau SV. Jacobi stability analysis of dynamical systems-applications in gravitation and cosmology. Adv Theor Math Phys. 2010;4:1145–1196.
  • Oiwa S, Yajima T. Jacobi stability analysis and chaotic behavior of nonlinear double pendulum. Int J Geome Metho Moder Phys. 2017;14:1750176.
  • Abolghasem H. Jacobi stability of circular orbits in a central force. J Dynal Geom. 2012;10:197–214.
  • Dsnils B, Harko T, Mak MK, et al. Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background. Adv High Energy Phys Article ID. 2016;7521464:1–26.
  • Harko T, Sabau VS. Jacobi stability of the vacuum in the static spherically symmetric brane world models. Phys Rev D. 2008;77:104009.
  • Bohmer CG, Harko T. Nonlinear stability analysis of the Emden–Fowler equation. J Nonlinear Math Phys. 2010;17:503–516.
  • Sabău VS. Systems biology and deviation curvature tensor. Nonlinear Anal Real World Appl. 2005;6:563–587.
  • Yamasaki K, Yajima T. Lotka–Volterra system and KCC theory: differential geometric structure of competitions and predations. Nonlinear Anal Real World Appl. 2013;14:1845–1853.
  • Yamasaki K, Yajima T. Differential geometric structure of non-equilibrium dynamics in competition and predation: finsler geometry and KCC theory. J Dynal Geom. 2016;14:137–153.
  • Gupta MK, Yadav CK. KCC theory and its application in a tumor growth model. Math Methods Appl Sci. 2017;40:7470–7487.
  • Abolghasem H. Lyapunov stability versus Jacobi stability. J Dynal Geom. 2012;10:13–32.
  • Lake MJ, Harko T. Dynamical behavior and Jacobi stability analysis of wound strings. Euro Phys J C. 2016;76:76–311.
  • Antonelli PL, Bucataru I. New results about the geometric invariants in KCC–theory. An St Univ ‘Al I Cuza’ Iasi. 2001;47:405–420.
  • Harko T, Pantaragphong P, Sabau SV. Kosambi–Cartan–Chern (KCC) theory for higher-order dynamical systems. Int J Geome Metho Moder Phys. 2016;13:1650014.
  • Harko T, Ho CY, Leung CS, et al. Jacobi stability analysis of the Lorenz system. Int J Geome Metho Moder Phys. 2015;12:55–72.
  • Gupta MK, Yadav CK. Jacobi stability analysis of Rössler system. Int J Bifur Chaos. 2017;27:63–76.
  • Gupta MK, Yadav CK. Jacobi stability analysis of modified Chua circuit system. Int J Geome Metho Moder Phys. 2017;14:121–142.
  • Gupta MK, Yadav CK. Rabinovich–Fabrikant system in view point of KCC theory in Finsler geometry. J Interdisc Math. 2019;22:219–241.
  • Huang Q, Liu A, Liu Y. Jacobi stability analysis of Chen system. Int J Bifur Chaos. 2019;29:1950139.
  • Feng C, Huang Q, Liu Y. Jacobi analysis for an unusual 3D autonomous system. Int J Geom Methods Mod Phys. 2020;17:2050062.
  • Chen B, Liu Y, Wei Z, et al. New insights into a chaotic system with only a Lyapunov stable equilibrium. Math Methods Appl Sci. 2020;43:1–18.
  • Chen Y, Yin Z. The Jacobi stability of a Lorenz-type multistable hyperchaotic system with a curve of equilibria. Int J Bifur Chaos. 2019;29:1950062.
  • Harko T, Pantaragphong P, Sabau S. A new perspective on the Kosambi–Cartan–Chern theory, and its applications. Int J Bifur Chaos. 2015;27:1–13.
  • Yajima T, Nagahama H. KCC-theory and geometry of the Rikitake system. J Phys A Math Gen. 2007;40:2755–2772.
  • Yajima T, Nagahama H. Nonlinear dynamical system and KCC–theory. Acta Math Academiae Paedagogicae Nyiregyhaziensis. 2008;24:179–189.
  • Yajima T, Nagahama H. Geometrical unified theory of Rikitake system and KCC–theory. Nonlinear Anal. 2009;71:203–210.
  • Gupta MK, Yadav CK. Jacobi stability analysis of Rikitake system. Int J Geom Methods Modern Phys. 2016;13:1650098.
  • Yajima T, Yamasaki K. Jacobi stability for dynamical systems of two–dimensional second-order differential equations and application to overhead crane system. Int J Geom Methods Modern Phys. 2016;13:1650045.
  • Feng C, Li L, Liu Y, et al. Global dynamics of the chaotic disk dynamo system driven by noise. Complexity. 2020;2020. Article ID 8375324.
  • Yang Q, Xiang Q. Existence of chaotic oscillations in second-order linear hyperbolic PDEs with implicit boundary conditions. J Math Anal Appl. 2018;457:751–775.
  • Li C, Sprott J. How to bridge attractors and repellors. Int J Bifur Chaos. 2017;27:1750149.
  • Wei Z, Sprott J, Chen H. Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Phys Lett A. 2015;379:2184–2187.
  • Yang Q, Wei Z, Chen G. An unusual 3D autonomous quadratic chaotic system with two stable node–foci. Int J Bifur Chaos. 2010;20:1061–1083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.