Publication Cover
Applicable Analysis
An International Journal
Volume 101, 2022 - Issue 14
258
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media

, , , &
Pages 4914-4941 | Received 23 Sep 2019, Accepted 12 Sep 2020, Published online: 31 Jan 2021

References

  • Neville AA, Matthews PC, Byrne HM. Interactions between pattern formation and domain growth. Bull Math Biol. 2006;68(8):1975–2003.
  • De Oliveira Vilaca LM, Gómez-Vargas B, Kumar S, et al. Stability analysis for a new model of multi-species convection-diffusion-reaction in poroelastic tissue. Appl Math Model. 2020;84:425–446.
  • Showalter RE. Diffusion in poro-elastic media. J Math Anal Appl. 2000;251:310–340.
  • Showalter RE, Momken B. Single-phase flow in composite poroelastic media. Math Meth Appl Sci. 2002;25:115–139.
  • Malysheva T, White LE. Sufficient conditions for Hadamard well-posedness of a coupled thermo-chemo-poroelastic system. Elect J Diff Eqns. 2016;2016(15):1–17.
  • Lee JJ, Piersanti E, Mardal K-A, et al. A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J Sci Comput. 2019;41(2):A722–A747.
  • Brun MK, Ahmed E, Nordbotten JM, et al. Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport. J Math Anal Appl. 2019;471(1–2):239–266.
  • Oyarzúa R, Ruiz-Baier R. Locking-free finite element methods for poroelasticity. SIAM J Numer Anal. 2016;54(5):2951–2973.
  • Lee JJ, Mardal K-A, Winther R. Parameter-robust discretization and preconditioning of Biot's consolidation model. SIAM J Sci Comput. 2017;39:A1–A24.
  • Alvarez M, Gatica GN, Ruiz-Baier R. An augmented mixed–primal finite element method for a coupled flow–transport problem. ESAIM: Math Model Numer Anal. 2015;49(5):1399–1427.
  • Anaya V, Bendahmane M, Mora D, et al. On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Netw Heterog Media. 2018;13(1):69–94.
  • Gatica GN, Gomez-Vargas B, Ruiz-Baier R. Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems. Comput Meth Appl Mech Engrg. 2018;337:411–438.
  • Anaya V, De Wijn Z, Gomez-Vargas B, et al. Rotation-based mixed formulations for an elasticity-poroelasticity interface problem. SIAM J Sci Comput. 2020;42(1):B225–B249.
  • Gatica GN, Marquez A, Meddahi S. Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid-solid interaction problem. SIAM J Numer Anal. 2007;45(5):2072–2097.
  • Ladyženskaja OA, Solonnikov VA, Ural'ceva NN. Linear and quasilinear equations of parabolic type [Translated from the Russian by S. Smith. Translations of Mathematical Monographs]. Vol. 23, Providence, R.I.: American Mathematical Society; 1968.
  • Brun MK, Berre I, Nordbotten JM, et al. Upscaling of the coupling of hydromechanical and thermal processes in a quasi-staticporoelastic medium. Transp Porous Media. 2018;124(1):137–158.
  • Recho P, Hallou A, Hannezo E. Theory of mechano-chemical pattering in biphasic biological tissues. PNAS. 2019;116(12):5344–5349.
  • Schnakenberg J. Simple chemical reaction systems with limit cycle behaviour. J Theoret Biol. 1979;81(3):389–400.
  • Jones GW, Chapman SJ, Modeling growth in biological materials. SIAM Rev. 2012;54(1):52–118.
  • Girault V, Raviart P-A. Finite element approximation of the Navier-Stokes equation. Berlin, New York: Springer-Verlag; 1979. (Lecture Notes in Math.; 749).
  • Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications. Heidelberg: Springer; 2013. (Springer Series in Computational Mathematics; 44).
  • Quarteroni A, Valli A. Numerical approximation of partial differential equations. Berlin Heidelberg: Springer-Verlag; 1994. (Springer Ser. Comput. Math; 23).
  • Ambartsumyan I, Khattatov E, Yotov I, et al. A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer Math. 2018;140(2):513–553.
  • Yi S-Y. A study of two modes of locking in poroelasticity. SIAM J Numer Anal. 2017;55:1915–1936.
  • Kumar S, Oyarzúa R, Ruiz-Baier R, et al. Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM: Math Model Numer Anal. 2020;54(1):273–299.
  • Berger L, Bordas R, Kay D, et al. A stabilized finite element method for finite-strain three-field poroelasticity. Comput Mech. 2017;60(1):51–68.
  • De Oliveira Vilaca LM, Milinkovitch MC, Ruiz-Baier R. Numerical approximation of a 3D mechanochemical interface model for skin patterning. J Comput Phys. 2019;384:383–404.
  • Hong Q, Kraus J. Parameter-robust stability of classical three-field formulation of Biot's consolidation model. Electron Trans Numer Anal. 2018;48:202–226.
  • Ahmed E, Nordbotten JM, Radu FA. Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems. J Comput Appl Math. 2020;364:112312.
  • Ahmed E, Radu FA, Nordbotten JM. Adaptive poromechanics computations based on a posteriori error estimates for fully mixed formulations of Biot's consolidation mode. Comput Methods Appl Mech Engrg. 2019;347:264–294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.