Publication Cover
Applicable Analysis
An International Journal
Volume 101, 2022 - Issue 16
289
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hopf bifurcation of a diffusive SIS epidemic system with delay in heterogeneous environment

&
Pages 5906-5931 | Received 28 Jun 2020, Accepted 19 Mar 2021, Published online: 01 Apr 2021

References

  • Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. R Soc Lond Proc Ser A Math Phys Eng Sci. 1927;115:700–721.
  • Kermack WO, McKendrick AG. Contribution to the mathematical theory of epidemics. R Soc Lond Proc Ser A Math Phys Eng Sci. 1932;138:55–83.
  • Brauer F. Compartmental models in epidemiolog. Berlin: Springer; 2008.
  • Brauer F, Castillo-Chavez C. Mathematical models in population biology and epidemiology. NewYork: Springer; 2012.
  • Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000;42:599–653.
  • Martcheva M. An introduction to mathematical epidemiology. New York: Springer; 2015.
  • Murray JD. Mathematical biology. Berlin: Springer-Verlag; 1989.
  • Ma ZE, Zhou YC, Wang WD, et al. Mathematical modeling and research of infectious disease dynamics. Beijing: Science Press; 2004. (in Chinese).
  • Abramson G, Kenkre VM. Spatiotemporal patterns in hantavirus infection. Phys Rev E. 2002;66(3):011912.
  • Abramson G, Kenkre VM, Yates TL, et al. Traveling waves of infection in the hantavirus epidemics. Bull Math Biol. 2003;65:519–534.
  • Gourley SA, Lou Y. A mathematical model for the spatial spread and biocontrol of the Asian longhorned beetle. SIAM J Appl Math. 2014;74:864–884.
  • Gourley SA, Zou X. A mathematical model for the control and eradication of a wood boring beetle infestation. SIAM J Appl Math. 2008;68:1665–1687.
  • Ka¨llen´ A. Thresholds and travelling waves in an epidemic model for rabies. Nonlinear Anal. 1984;8:851–856.
  • Ka¨llen´ A, Arcuri P, Murray JD. A simple model for the spatial spread and control of rabies. J Theor Biol. 1985;116:377–393.
  • Murray JD, Stanley EA, Brown DL. On the spatial spread of rabies among foxes. R Soc Lond Proc Ser B Biol Sci. 1986;229:111–150.
  • Lewis MA, Renclawowicz J, van den Driessche P. Traveling waves and spread rates for a west Nile virus model. Bull Math Biol. 2006;68:3–23.
  • Tarboush AK, Lin Z, Zhang M. Spreading and vanishing in a west Nile virus model with expanding fronts. Sci China Math. 2017;60:841–860.
  • Lou Y, Zhao X-Q. The periodic Ross-Macdonald model with diffusion and advection. Appl Anal. 2010;89:1067–1089.
  • Lou Y, Zhao X-Q. A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol. 2011;62:543–568.
  • Takahashi LT, Maidana NA, Ferreira Jr. WC, et al. Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind. Bull Math Biol. 2005;67:509–528.
  • Deng K, Wu Y. Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model. Proc R Soc Edinburgh Sec A. 2016;146:929–946.
  • Wu Y, Zou X. Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J Differ Equ. 2016;261:4424–4447.
  • Wen X, Ji J, Li B. Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism. J Math Anal Appl. 2018;458:715–729.
  • Allen LJS, Bolker BM, Lou Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin Dyn Syst. 2008;21:1–20.
  • Peng R. Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. part I. J Differ Equ. 2009;247:1096–1119.
  • Peng R, Liu S. Global stability of the steady states of an SIS epidemic reaction-diffusion model. Nonlinear Anal. 2009;71:239–247.
  • Peng R, Yi F. Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. Phys D. 2013;259:8–25.
  • Peng R, Zhao X-Q. A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity. 2012;25:1451–1471.
  • Cui R, Lam K-Y, Lou Y. Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J Differ Equ. 2017;263:2343–2373.
  • Cui R, Lou Y. A spatial SIS model in advective heterogeneous environments. J Differ Equ. 2016;261:3305–3343.
  • Kuto K, Matsuzawa H, Peng R. Concentration profile of endemic equilibrium of a reaction-diffusion-advection SIS epidemic model. Calc Var Partial Differ Equ. 2017;56. 1283. Art.112, 28 pp.
  • Song P, Lou Y, Xiao Y. A spatial SEIRS reaction-diffusion model in heterogeneous environment. J Differ Equ. 2019;267:5084–5114.
  • Li HC, Peng R, Wang Z-A. On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms. SIAM J Appl Math. 2018;78(4):2129–2153.
  • Lei C, Xiong J, Zhou X. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete Contin Dyn Syst Ser B. 2020;25:81–98.
  • Li B, Bie Q. Long-time dynamics of an SIRS reaction-diffusion epidemic model. J Math Anal Appl. 2019;475:1910–1926.
  • Li HC, Peng R, Wang F-B. Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J Differ Equ. 2017;262:885–913.
  • Li B, Li H, Tong Y. Analysis on a diffusive SIS epidemic model with logistic source. Z Angew Math Phys. 2017;68. Art. 96, 25 pp. https://doi.org/10.1007/s00033-017-0845-1.
  • Li H, Peng R, Xiang T. Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion. European J Appl Math. 2020;31:26–56.
  • Lei C, Li F, Liu J. Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete Contin Dyn Syst Ser B. 2018;23:4499–4517.
  • Du Z, Peng R. A priori L∞ estimates for solutions of a class of reaction-diffusion systems. J Math Biol. 2016;72:1429–1439.
  • Guo SJ, Wu JH. Bifurcation theory of functional differential equations. New York: Springer-Verlag; 2013.
  • Guo SJ, Li SZ. On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition. Appl Math Lett. 2020;103. 106197. 7pp.
  • Guo SJ, Ma L. Stability and bifurcation in a delayed reaction-diffusion equation with dirichlet boundary condition. J Nonlinear Sci. 2016;26(2):545–580.
  • Li SZ, Guo SZ. Stability and Hopf bifurcation in a hutchinson model. Appl Math Lett. 2020;101:106066.
  • Li SZ, Guo SJ. Hopf bifurcation for semilinear FDEs in general banach spaces. Internat J Bifur Chaos. 2020;30(9):2050130.
  • Ma L, Guo SJ. Bifurcation and stability of a two-species reaction-diffusion-advection competition model. Nonlinear Anal. Real World Appl.,. 2021;59:103241. Art.112, 28 pp.
  • Ma L, Guo SJ. Stability and bifurcation in a diffusive Lotka-Volterra system with delay. Commun Math Appl. 2016;72(1):147–177.
  • Ma L, Guo SJ. Bifurcation and stability of a two-species diffusive Lotka-Volterra model. Commun Pure Appl Anal. 2020;19:1205–1232.
  • Qiu HH, Guo SJ, Li SZ. Stability and bifurcation in a Predator-Prey system with Prey-Taxis. Internat J Bifur Chaos Appl Sci Eng. 2020;30. 2050022. 25pp.
  • Wei D, Guo SJ. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system, Discrete Continuous Dynamical Systems Series B. (2020) in Press, Available from: doi:10.3934/dcdsb.2020197.
  • Zou R, Guo SDynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment, Discrete Continuous Dynamical Systems Series B. (2020) in Press, Available from: doi:10.3934/dcdsb.2020093.
  • Cantrell RS, Cosner C. Spatial ecology via reaction-diffusion equations. Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester; 2004.
  • He X, Ni WM. The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I: heterogeneity vs. homogeneity. J Differ Equ. 2013;254:528–546.
  • Ni W-M. The mathematics of diffusion, CBMS-NSF regional conf. Philadelphia: SIAM; 2011. Series in Applied Mathematics; 82.
  • Umezu K. Blowing-up of principal eigenvalues for Neumann boundary conditions. Proc R Soc Edinburgh Sec A. 2007;137:567–579.
  • Smith H. Monotone dynamical system. In: An introduction to the theory of competitive and ooperative Systems, Mathematical Surveys and Monographs. Vol. 41, Providence, RI: American Mathematical Society; 1995.
  • Wu ZQ, Yin JX, Wang CP. Introduction to elliptic and parabolic equations. Beijing: Science Press; 2003. (in Chinese).
  • Ye QX, Li ZY, Wang MX, et al. Introduction to reaction-diffusion equations. 2nd ed. Beijing: Science Press; 2011. (in Chinese).
  • Wu JH. Theory and applications of partial functional differential equations. New York: Springer; 1996.
  • Faria T. Normal forms for semilinear functional differential equations in Banach spaces and applications. II. Discrete Contin Dyn Syst. 2001;7:155–176.
  • Faria T, Magalhes L. Normal forms for retarded functional differential equations with parameters and applications to hopf bifurcation. J Differ Equ. 1995;122:181–200.
  • Faria T, Magalhes L. Normal forms for retarded functional differential equations and applications to Boganov-Takens singularity. J Differ Equ. 1995;122:201–24.
  • Faria T, Huang WZ, Wu JH. Smoothness of center manifolds for maps and formal adjoints for semilinear FDEs in general Banach spaces. SIAM J Math Anal. 2002;34:173–203.
  • Hassard BD, Kazarinoff ND, Wan YH. Theory and applications of Hopf bifurcation. Cambridge, New York: Cambridge University Press; 1981. London Mathematical Society Lecture Note Series; 41.
  • Chen SS, Shi JP. Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J Differ Equ. 2012;253:3440–3470.
  • Hu R, Yuan Y. Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay. J Differ Equ. 2011;250:2779–2806.
  • Su Y, Wei JJ, Shi JP. Hopf bifurcation in a reaction-diffusive population model with delay effect. J Differ Equ. 2009;247:1156–1184.
  • Su Y, Wei JJ, Shi JP. Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence. J Dyn Differ Equ. 2012;24(4):897–925.
  • Guo SJ. Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect. J Differ Equ. 2015;259:1409–1448.
  • Gurney WSC, Blythe SP, Nisbet RM. Nicholsons blowflies revisited. Nature. 1980;287:17–21.
  • Faria T, Huang WZ. Stability of periodic solutions arising from Hopf bifurcation for a reaction-diffusion equation with time delay, differential equations and dynamical systems, Lisbon (2000). In Fields institute communications. Vol. 31, Providence, RI: American Mathematical Society; 2002. p. 125–141.
  • Chafee N, Infante EF. A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl Anal. 1974;4:17–37.
  • Deng YB, Peng SJ, Yan SS. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J Differ Equ. 2015;258:115–147.
  • Yi FQ, Wei JJ, Shi JP. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J Differ Equ. 2009;246:1944–1977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.