Publication Cover
Applicable Analysis
An International Journal
Volume 101, 2022 - Issue 18
332
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Identifying a time-dependent zeroth-order coefficient in a time-fractional diffusion-wave equation by using the measured data at a boundary point

ORCID Icon &
Pages 6522-6547 | Received 05 Jun 2020, Accepted 12 May 2021, Published online: 27 May 2021

References

  • Kilbas A, Srivastava H, Trujillo J. Theory and applications of fractional differential equations. Amsterdam: Elsevier; 2006.
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press; 1999.
  • Berkowitz B, Scher H, Silliman SE. Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour Res. 2000;36(1):149–158.
  • Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep. 2000;339(1):1–77.
  • Sokolov IM, Klafter J. From diffusion to anomalous diffusion: a century after Einsteins Brownian motion. Chaos. 2005;15(2):1–7.
  • Agrawal OP. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 2002;29:145–155.
  • Kian Y, Yamamoto M. On existence and uniqueness of solutions for semilinear fractional wave equations. Fract Calc Appl Anal. 2017;20(1):117–138.
  • Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl. 2011;382(1):426–447.
  • Chen A, Li CP. Numerical solution of fractional diffusion-wave equation. Numer Funct Anal Optim. 2016;37:19–39.
  • Dai HY, Wei LL, Zhang XD. Numerical algorithm based on an implicit fully discrete local discontinuous galerkin method for the fractional diffusion-wave equation. Numer Algorithms. 2014;67:845–862.
  • Du R, Cao WR, Sun ZZ. A compact difference scheme for the fractional diffusion-wave equation. Appl Math Model. 2010;34:2998–3007.
  • Liu FW, Meerschaert MM, McGough RJ, et al. Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract Calc Appl Anal. 2013;16(1):9–25.
  • Ren JC, Sun ZZ. Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with neumann boundary conditions. J Sci Comput. 2013;56(2):381–408.
  • Wei T, Zhang Y. The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput Math Appl. 2018;75(10):3632–3648.
  • Siskova K, Slodicka M. Recognition of a time-dependent source in a time-fractional wave equation. Appl Numer Math. 2017;121:1–17.
  • Liao KF, Li YS, Wei T. The identification of the time-dependent source term in time-fractional diffusion-wave equations. East Asian J Appl Math. 2019;9(2):330–354.
  • Fujishiro K, Kian Y. Determination of time dependent factors of coefficients in fractional diffusion equations. Math Control Relat Fields. 2016;6(2):251–269.
  • Zhang Z. An undetermined coefficient problem for a fractional diffusion equation. Inverse Probl. 2016;32(1):015011.
  • Sun L, Zhang Y, Wei T. Recovering the time-dependent potential function in a multi-term time-fractional diffusion equation. Appl Numer Math. 2019;135:228–245.
  • Sun L, Yan X, Wei T. Identification of time-dependent convection coefficient in a time-fractional diffusion equation. J Comput Appl Math. 2019;346:505–517.
  • Adams RA. Sobolev spaces. New York-London: Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers]; 1975. (Pure and Applied Mathematics; 65).
  • Pazy A. Semigroups of linear operators and applications to partial differential equations. Berlin: Springer-Verlag; 1983.
  • Fujiwara D. Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc Jpn Acad. 1967;43:82–86.
  • Gorenflo R, Yamamoto M. Operator-theoretic treatment of linear Abel integral equations of first kind. Jpn J Indust Appl Math. 1999;16(1):137–161.
  • Brezis H. Functional analysis, Sobolev spaces and partial differential equations. New York (NY): Springer; 2011.
  • Henry D. Geometric theory of semilinear parabolic equations. Berlin-New York: Springer-Verlag; 1981. (Lecture Notes in Mathematics; 840).
  • Hanke M. A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems. 1997;13(1):79–95.
  • Jin Q. On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems. Numer Math. 2010;115(2):229–259.
  • Morozov V, Nashed Z, Aries A. Methods for solving incorrectly posed problems. New York (NY): Springer-Verlag; 1984.
  • Hanke M, Hansen P. Regularization methods for large-scale problems. Survey Math Indust. 1993;3(4):253–315.
  • Sun ZZ, Wu XN. A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math. 2006;56(2):193–209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.