Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 1
90
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Constant vorticity equatorial flows beneath surface solitary waves with centripetal forces

ORCID Icon
Pages 149-158 | Received 23 Oct 2020, Accepted 19 Jun 2021, Published online: 06 Jul 2021

References

  • Craik ADD. The origins of water wave theory. Annu Rev Fluid Mech. 2004;36:1–28.
  • Drazin PG, Johnson RS. Solitons: an introduction. Cambridge: Cambridge University Press; 1989.
  • Friedrichs KO, Hyers DH. The existence of solitary waves. Commun Pure Appl Math. 1954;7:517–550.
  • Beale JT. The existence of solitary water waves. Commun Pure Appl Math. 1977;30:373–389.
  • Amick C, Toland J. On solitary water-waves of finite amplitude. Arch Ration Mech Anal. 1981;76:9–95.
  • Craig W. Non-existence of solitary water waves in three dimensions. Phil Trans R Soc Lond A. 2002;360:2127–2135.
  • Craig W, Sternberg P. Symmetry of solitary waves. Commun Partial Differ Equ. 1988;13(5):603–633.
  • Constantin A. On the particle paths in solitary water waves. Quart Appl Math. 2010;68:81–90.
  • Constantin A, Escher J. Particle trajectories in solitary water waves. Bull Am Math Soc. 2007;44(3):423–431.
  • Constantin A, Escher J, Hsu H-C. Pressure beneath a solitary water wave: mathematical theory and experiments. Arch Ration Mech Anal. 2011;201:251–269.
  • Hur VM. Exact solitary water waves with vorticity. Arch Ration Mech Anal. 2008;188:213–244.
  • Hur VM. Symmetry of solitary waves with vorticity. Math Res Lett. 2008;15(3):491–509.
  • Hur VM. Analyticity of rotational flows beneath solitary water waves. Int Math Res Not. 2012;2012(11):2550–2570.
  • Kozlov V, Kuznetsov N, Lokharu E. Solitary waves on constant vorticity flows with an interior stagnation point. J Fluid Mech. 2020;904:Paper No. A4.
  • Gerstner F. Theorie der Wellen samt einer daraus abgeleiteten theorie der deichprofile. Ann Phys. 1809;2:412–445.
  • Constantin A, Strauss W, Varvaruca E. Global bifurcation of steady gravity water waves with critical layers. Acta Math. 2016;217:195–262.
  • Ionescu-Kruse D, Martin CI. Periodic equatorial water flows from a Hamiltonian perspective. J Differ Equ. 2017;262:4451–4474.
  • Martin CI. Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity. Phys Fluids. 2018;30:107102.
  • Lighthill J. Waves in fluids. Cambridge: Cambridge University Press; 1978.
  • Basu B, Martin CI. Resonant interactions of rotational water waves in the equatorial f-plane approximation. J Math Phys. 2018;59(10):103101. 9 pp.
  • Chu J, Escher J. Steady periodic equatorial water waves with vorticity. Discrete Contin Dyn Syst. 2019;39:4713–4729.
  • Constantin A, Johnson RS. Steady large-scale ocean flows in spherical coordinates. Oceanography. 2018;31:42–50.
  • Martin CI. Resonant interactions of capillary–gravity water waves. J Math Fluid Mech. 2017;19:807–817.
  • Yang Y, Wei X, Xie N. On a nonlinear model for the Antarctic circumpolar current. Appl Anal. 2019. doi:10.1080/00036811.2019.1698731
  • Constantin A, Ehrnström M, Wahlén E. Symmetry of steady periodic gravity water waves with vorticity. Duke Math J. 2007;140:591–603.
  • Constantin A, Strauss W. Exact steady periodic water waves with vorticity. Commun Pure Appl Math. 2004;57:481–527.
  • Constantin A, Kartashova E. Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves. Europhys Lett. 2009;86:29001.
  • Constantin A. Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train. Eur J Mech B Fluids. 2011;30:12–16.
  • Stuhlmeier R. On constant vorticity flows beneath two-dimensional surface solitary waves. J Nonlinear Math Phys. 2012;19:34–42.
  • Wahlen E. Non-existence of three-dimensional travelling water waves with constant non-zero vorticity. J Fluid Mech. 2014;746:R2, 7pp.
  • Martin CI. Two dimensionality of gravity water flows governed by the equatorial f-plane approximation. Ann Math Pura Appl. 2017;196:2253–2260.
  • Martin CI. Constant vorticity water flows with full Coriolis term. Nonlinearity. 2019;32:2327–2336.
  • Martin CI. On constant vorticity water flows in the β-plane approximation. J Fluid Mech. 2019;865:762–774.
  • Chu J, Yang Y. Constant vorticity water flows in the equatorial β-plane approximation with centripetal forces. J Differ Equ. 2020;269(11):9336–9347.
  • Martin CI. Geophysical water flows with constant vorticity and centripetal terms. Ann Mat Pura Appl (4). 2021; 200(1): 101–116. doi:10.1007/s10231-020-00985-4
  • Chu J, Ionescu-Kruse D, Yang Y. Exact solution and instability for geophysical trapped waves at arbitrary latitude. Discrete Cont Dyn Syst. 2019;39:4399–4414.
  • Chu J, Ionescu-Kruse D, Yang Y. Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude. J Math Fluid Mech. 2019;21(2):Article number 19, 16 pp.
  • Constantin A, Johnson RS. An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current. J Phys Oceanogr. 2016;46:3585–3594.
  • Yang Y, Wang X. Exact and explicit internal water waves at arbitrary latitude with underlying currents. Dyn Partial Differ Equ. 2020;17(2):117–127.
  • Constantin A. On the modelling of equatorial waves. Geophys Res Lett. 2012;39:L05602.
  • Constantin A, Ivanov RI. Equatorial wave-current interactions. Commun Math Phys. 2019;370:1–48.
  • Constantin A, Johnson RS. A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys Fluids. 2017;29:056604.
  • Cushman-Roisin B, Beckers JM. Introduction to geophysical fluid dynamics: physical and numerical aspects. Waltham (MA): Academic; 2011.
  • Evans LC. Partial differential equations. Providence (RI): American Mathematical Society; 1998. (Graduate studies in mathematics; 19).
  • Constantin A, Escher J. Analyticity of periodic traveling free surface water waves with vorticity. Ann Math (2). 2011;173:559–568.
  • Fraenkel LE. An introduction to maximum principles and symmetry in elliptic problems. Cambridge: Cambridge University Press; 2000. (Cambridge tracts in mathematics; 128).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.