Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 3
95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A priori estimates of the electrohydrodynamic waves with vorticity: horizontal electric field

ORCID Icon
Pages 695-708 | Received 04 Feb 2021, Accepted 22 Jul 2021, Published online: 13 Aug 2021

References

  • Melcher JR, Schwarz WJ. Interfacial relaxation overstability in a tangential electric field. Phys Fluids. 1968;11(12):2604.
  • Tilley BS, Petropoulos PG, Papageorgiou DT. Dynamics and rupture of planar electrified liquid sheets. Phys Fluids. 2001;13(12):3547–3563.
  • Grandison S, Papageorgiou DT, Vanden-Broeck JM. Interfacial capillary waves in the presence of electric fields. Eur J Mech B Fluids. 2007;26(3):404–421.
  • Grandison S, Papageorgiou DT, Vanden-Broeck JM. The influence of electric fields and surface tension on Kelvin–Helmholtz instability in two-dimensional jets. Z Angew Math Phys. 2012;63(1):125–144.
  • Barannyk LL, Papageorgiou DT, Petropoulos PG. Suppression of Rayleigh–Taylor instability using electric fields. Math Comput Simul. 2012;82(6):1008–1016.
  • Landau LD, Lifshits EM. Electrodynamics of continuous media. Oxford, England: Pergamon Press; 1984.
  • Lin Z, Zhu Y, Wang Z. Local bifurcation of electrohydrodynamic waves on a conducting fluid. Phys Fluids. 2017;29(3):032107.
  • Mohamed AA, Elshehawey EF. Nonlinear electrohydrodynamic Rayleigh–Taylor instability. part 1. A perpendicular field in the absence of surface charges. J Fluid Mech. 1983;129:473–494.
  • Papageorgiou DT. Film flows in the presence of electric fields. Annu Rev Fluid Mech. 2019;51:155–187.
  • Papageorgiou DT, Petropoulos PG, -M. Vanden-Broeck J. Gravity capillary waves in fluid layer under normal electric field. Phys Rev E. 2005;72(6):051601.
  • Taylor GI. Disintegration of water droplets in an electric field. Proc R Soc A. 1964;280(1382):383–397.
  • Taylor GI, McEwan AD. The stability of a horizontal fluid interface in a vertical electric field. J Fluid Mech. 1965;22:1–15.
  • Wang Z. Modelling nonlinear electrohydrodynamic surface waves over three-dimensional conducting fluids. Proc R Soc A. 2017;473(2200):20160817.
  • Nalimov VI. The Cauchy–Poisson problem. (Russian) Dinamika Splošn. Sredy Vyp. 18 Dinamika židkost. so Svobod. Granicami, 254 (1974), 104–210.
  • Yoshihara H. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ Res Inst Math Sci. 1982;18(4):49–96.
  • Yoshihara H. Capillary-gravity waves for an incompressible ideal fluid. J Math Kyoto Univ. 1983;23(4):649–694.
  • Craig W. An existence theory for water waves and the Boussinesq and Korteweg-de-Vries scaling limits. Commun Partial Differ Equ. 1985;10(8):787–1003.
  • Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent Math. 1997;130(1):39–72.
  • Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J Am Math Soc. 1999;12(2):445–495.
  • Christodoulou D, Lindblad H. On the motion of the free surface of a liquid. Commun Pure Appl Math. 2000;53(12):1536–1602.
  • Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann Math. 2005;162(1):109–194.
  • Beyer K, Günther M. On the Cauchy problem for a capillary drop. I. Irrotational motion. Math Methods Appl Sci. 1998;21(12):1149–1183.
  • Lannes D. Well-posedness of the water-waves equations. J Am Math Soc. 2005;18(3):605–654.
  • Ambrose DM, Masmoudi N. The zero surface tension limit of two-dimensional water waves. Commun Pure Appl Math. 2005;58(10):1287–1315.
  • Ambrose DM, Masmoudi N. The zero surface tension limit of three-dimensional water waves. Indiana Univ Math J. 2009;58(2):479–521.
  • Coutand D, Shkoller S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J Am Math Soc. 2007;20(3):829–930.
  • Shatah J, Zeng C. Geometry and a priori estimates for free boundary problems of the Euler equation. Commun Pure Appl Math. 2008;61(5):698–744.
  • Shatah J, Zeng C. A priori estimates for fluid interface problems. Commun Pure Appl Math. 2008;61(6):848–876.
  • Shatah J, Zeng C. Local well-posedness for fluid interface problems. Arch Ration Mech Anal. 2011;199(2):653–705.
  • Lannes D. A stability criterion for two-fluid interfaces and applications. Arch Ration Mech Anal. 2013;208(2):481–567.
  • Wang Z, Yang J. Well-posedness of electrohydrodynamic interfacial waves under tangential electric field. SIAM J Math Anal. 2021;53(2):2567–2594.
  • Yang J. Well-posedness of electrohydrodynamic waves under vertical electric field. Z Angew Math Phys. 2020;71(5):Paper No. 171.
  • Yang J. A priori estimates of the electrohydrodynamic waves with vorticity: vertical electric field. J Math Anal Appl. 2021;498(2):124973.
  • Lannes D. The water waves problem: mathematical analysis and asymptotics. American Mathematical Society; 2013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.