Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 5
110
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Intersecting fractures in porous media: mathematical and numerical analysis

, , &
Pages 1312-1334 | Received 15 Feb 2021, Accepted 10 Sep 2021, Published online: 04 Oct 2021

References

  • Douglas J Jr, Arbogast T. Dual porosity models for flow in naturally fractured reservoirs. In: Cushman JH, editor. Dynamics of fluids in hierarchial porous formations. Academic-Press; 1990. p. 177–221.
  • Arbogast T, Douglas J Jr, Hornung U. Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J Math Anal. 1990;21:823–836.
  • de Dreuzy JR, Erhel J. Efficient algorithms for the determination of the connected fracture network and the solution to the steady-state flow equation in fracture networks. Comput Geosci. 2003;29:107–111.
  • de Dreuzy JR, Davy P, Erhel J, et al. Anomalous diffusion exponents in continuous two-dimensional multifractal media. Phys Rev E. 2004;70:016306.
  • Kumar K, List F, Pop IS, et al. Formal upscaling and numerical validation of unsaturated flow models in fractured porous media. J Comput Phys. 2020;407:109138. DOI:10.1016/j.jcp.2019.109138
  • List F, Kumar K, Pop IS, et al. Rigorous upscaling of unsaturated flow in fractured porous media. SIAM J Math Anal. 2020;52(1):239–276. DOI:10.1137/18M1203754
  • Nœtinger B. A quasi steady state method for solving transient darcy flow in complex 3d fractured networks accounting for matrix to fracture flow. J Comput Phys. 2015;283:205–223. Available from: https://www.sciencedirect.com/science/article/pii/S0021999114008006.
  • Jerbi C, Fourno A, Nœtinger B, et al. A new estimation of equivalent matrix block sizes in fractured media with two-phase flow applications in dual porosity models. J Hydrol. 2017;548:508–523. Available from: https://www.sciencedirect.com/science/article/pii/S0022169417301749.
  • Berre I, Doster F, Keilegavlen E. Flow in fractured porous media: A review of conceptual models and discretization approaches. Transp Porous Med. 2019;130:215–236. DOI:10.1007/s11242-018-1171-6
  • Erhel J, de Dreuzy JR, Poirriez B. Flow simulation in three-dimensional discrete fracture networks. SIAM J Sci Comput. 2009;31(4):2688–2705.
  • Pichot G, Erhel J, de Dreuzy JR. A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks. SIAM J Sci Comput. 2012;34(1):B86–B105. DOI:10.1137/100804383
  • Pichot G, Poirriez B, Erhel J, et al. A mortar BDD method for solving flow in stochastic discrete fracture networks. In: Domain decomposition methods in science and engineering XXI. (Lect. Notes Comput. Sci. Eng.; Vol. 98). Cham: Springer; 2014. p. 99–112.
  • Formaggia L, Fumagalli A, Scotti A, et al. A reduced model for Darcy's problem in networks of fractures. ESAIM Math Model Numer Anal. 2014;48(4):1089–1116. DOI:10.1051/m2an/2013132.
  • Berrone S, Pieraccini S, Scialò S. An optimization approach for large scale simulations of discrete fracture network flows. J Comput Phys. 2014;256:838–853. Available from: https://www.sciencedirect.com/science/article/pii/S0021999113006426.
  • Hyman JD, Karra S, Makedonska N, et al. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Comput Geosci. 2015;84:10–19. Available from: https://www.sciencedirect.com/science/article/pii/S0098300415300261.
  • Karimi-Fard M, Durlofsky L. A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features. Adv Water Resour. 2016;96:354–372. Available from: https://www.sciencedirect.com/science/article/pii/S0309170816302950.
  • Benedetto MF, Berrone S, Borio A. The virtual element method for underground flow simulations in fractured media. In: Ventura G, Benvenuti E, editors. Advances in discretization methods: Discontinuities, virtual elements, fictitious domain methods. Cham: Springer International Publishing; 2016. p. 167–186. DOI:10.1007/978-3-319-41246-7_8.
  • Fumagalli A, Keilegavlen E, Scialò S. Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations. J Comput Phys. 2019;376:694–712. DOI:10.1016/j.jcp.2018.09.048
  • Hédin F, Pichot G, Ern A, A hybrid high-order method for flow simulations in discrete fracture networks. In: ENUMATH – European Numerical Mathematics and Advanced Applications Conference 2019; Sep.; Netherlands: Egmond aan Zee; 2019. Available from: https://hal.inria.fr/hal-02315491.
  • Alboin C, Jaffré J, Roberts JE, et al. Domain decomposition for flow in fractured porous media. In: Proceedings of 11th Domain Decomposition Methods in Sciences and Engineering; 1999. p. 365–373.
  • Alboin C, Jaffré J, Roberts JE, et al. Modeling fractures as interfaces for flow and transport in porous media. In: Chen Z, Ewing R, editors. Fluid flow and transport in porous media: mathematical and numerical treatment. American Mathematical Society; 2002. (Contemporary mathematics; 295); p. 13–24.
  • Martin V, Jaffré J, Roberts JE. Modeling fractures and barriers as interfaces for flow in porous media. SIAM J Sci Comput. 2005;26(5):1667–1691.
  • Angot P, Boyer F, Hubert F. Asymptotic and numerical modelling of flows in fractured porous media. ESAIM M2AN. 2009;43(2):239–275. DOI:10.1051/m2an/2008052.
  • Nordbotten JM, Boon WM. Modeling, structure and discretization of hierarchical mixed-dimensional partial differential equations. In: Domain decomposition methods in science and engineering XXIV. (Lect. Notes Comput. Sci. Eng.; Vol. 125). Cham: Springer; 2018. p. 87–101. DOI:10.1007/978-3-319-93873-8_7.
  • Nordbotten JM, Boon WM, Fumagalli A, et al. Unified approach to discretization of flow in fractured porous media. Comput Geosci. 2019;23(2):225–237. DOI:10.1007/s10596-018-9778-9
  • Keilegavlen E, Fumagalli A, Berge R, et al. Implementation of mixed-dimensional models for flow in fractured porous media. In: Numerical mathematics and advanced applications – ENUMATH 2017. (Lect. Notes Comput. Sci. Eng.; Vol. 126). Cham: Springer; 2019. p. 573–580. DOI:10.1007/978-3-319-96415-7_52.
  • Ahmed E, Fumagalli A, Budiša A. A multiscale flux basis for mortar mixed discretizations of reduced Darcy-Forchheimer fracture models. Comput Methods Appl Mech Eng. 2019;354:16–36. DOI:10.1016/j.cma.2019.05.034
  • Sandve T, Berre I, Nordbotten J. An efficient multi-point flux approximation method for discrete fracture–matrix simulations. J Comput Phys. 2012;231(9):3784–3800. Available from: https://www.sciencedirect.com/science/article/pii/S0021999112000447.
  • Frih N, Martin V, Roberts JE, et al. Modeling fractures as interfaces with nonmatching grids. Comput Geosci. 2012;16(4):1043–1060. DOI:10.1007/s10596-012-9302-6.
  • Ahmed R, Edwards MG, Lamine S, et al. Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. J Comput Phys. 2015;303:470–497. Available from: https://www.sciencedirect.com/science/article/pii/S0021999115006609.
  • Ahmed R, Edwards M, Lamine S, et al. Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model. J Comput Phys. 2015;284:462–489. Available from: https://www.sciencedirect.com/science/article/pii/S0021999114008705.
  • Faille I, Fumagalli A, Jaffré J, et al. Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults. Comput Geosci. 2016;20(2):317–339. DOI:10.1007/s10596-016-9558-3.
  • Del Pra M, Fumagalli A, Scotti A. Well posedness of fully coupled fracture/bulk Darcy flow with XFEM. SIAM J Numer Anal. 2017;55(2):785–811. DOI:10.1137/15M1022574.
  • Flemisch B, Fumagalli A, Scotti A. A review of the XFEM-based approximation of flow in fractured porous media. In: Advances in discretization methods. (SEMA SIMAI Springer Ser.; Vol. 12). Cham: Springer; 2016. p. 47–76.
  • Amir L, Kern M, Martin V, et al. Décomposition de domaine pour un milieu poreux fracturé : un modèle en 3D avec fractures qui s'intersectent. ARIMA. 2006;5:11–25.
  • Boon WM, Nordbotten JM, Yotov I. Robust discretization of flow in fractured porous media. SIAM J Numer Anal. 2018;56(4):2203–2233. DOI:10.1137/17M1139102.
  • Berrone S, Pieraccini S, Scialò S. Flow simulations in porous media with immersed intersecting fractures. J Comput Phys. 2017;345:768–791. DOI:10.1016/j.jcp.2017.05.049.
  • Arrarás A, Gaspar FJ, Portero L, et al. Mixed-dimensional geometric multigrid methods for single-phase flow in fractured porous media. SIAM J Sci Comput. 2019;41(5):B1082–B1114. DOI:10.1137/18M1224751.
  • Schwenck N, Flemisch B, Helmig R, et al. Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput Geosci. 2015;19(6):1219–1230. DOI:10.1007/s10596-015-9536-1.
  • Frih N, Roberts JE, Saâda A. Modeling fractures as interfaces: a model for Forchheimer fractures. Comput Geosci. 2008;12(1):91–104. DOI:10.1007/s10596-012-9302-6.
  • Brenner K, Hennicker J, Masson R, et al. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions. J Comput Phys. 2018;357:100–124. Available from: https://www.sciencedirect.com/science/article/pii/S0021999117308781.
  • Gläser D, Flemisch B, Helmig R, et al. A hybrid-dimensional discrete fracture model for non-isothermal two-phase flow in fractured porous media. GEM Int J Geomath. 2019;10(1):Paper No. 5, 25. DOI:10.1007/s13137-019-0116-8
  • Gläser D, Helmig R, Flemisch B, et al. A discrete fracture model for two-phase flow in fractured porous media. Adv Water Resour. 2017;12:110. IWS2ID=4485.
  • Fumagalli A, Scotti A. Numerical modelling of multiphase subsurface flow in the presence of fractures. Commun Appl Ind Math. 2012;3(1):e–380, 23. DOI:10.4018/jkdb.2012010102
  • Reichenberger V, Jakobs H, Bastian P, et al. A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv Water Resour. 2006;29(7):1020–1036. Available from: https://www.sciencedirect.com/science/article/pii/S0309170805002150.
  • Hoteit H, Firoozabadi A. Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv Water Resour. 2008;31(1):56–73. Available from: https://www.sciencedirect.com/science/article/pii/S030917080700108X.
  • Mghazli Z, Naji I. Guaranteed a posteriori error estimates for a fractured porous medium. Math Comput Simul. 2019;164:163–179. DOI:10.1016/j.matcom.2019.02.002.
  • Hecht F, Mghazli Z, Naji I, et al. A residual a posteriori error estimators for a model for flow in porous media with fractures. J Sci Comput. 2019;79(2):935–968. DOI:10.1007/s10915-018-0875-7.
  • Flauraud E, Nataf F, Faille I, et al. Domain decomposition for an asymptotic geological fault modeling. Compt Rend Méc. 2003;331(12):849–855. Available from: https://www.sciencedirect.com/science/article/pii/S163107210300192X.
  • Ahmed E, Jaffré J, Roberts JE. A reduced fracture model for two-phase flow with different rock types. Math Comput Simul. 2017;137:49–70. Available from: https://www.sciencedirect.com/science/article/pii/S0378475416301987.
  • Berre I, Boon WM, Flemisch B, et al. Verification benchmarks for single-phase flow in three-dimensional fractured porous media; 2020.
  • Cowsar LC, Mandel J, Wheeler MF. Balancing domain decomposition for mixed finite elements. Math Comput. 1995;64(211):989–1015.
  • Gatica G. A simple introduction to the mixed finite element method. theory and applications. Springer; 2014. (SpringerBriefs in Mathematics). DOI:10.1007/978-3-319-03695-3.
  • Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications. Heidelberg: Springer; 2013. (Springer Series in Computational Mathematics; Vol. 44). DOI:10.1007/978-3-642-36519-5.
  • Fortin M. An analysis of the convergence of mixed finite element methods. RAIRO Anal Numér. 1977;11(4):341–354. iii. Available from: DOI:10.1051/m2an/1977110403411.
  • Brezzi F, Fortin M. Mixed and hybrid finite element methods. New York: Springer-Verlag; 1991. (Springer Series in Computational Mathematics; Vol. 15). DOI:10.1007/978-1-4612-3172-1.
  • Pencheva G, Yotov I. Balancing domain decomposition for mortar mixed finite element methods. Numer Linear Algebra Appl. 2003;10(1–2):159–180.
  • Eymard R, Gallouët T, Herbin R. Finite volume methods. In: Ciarlet PG, Lions JL, editors. Handbook of numerical analysis. Vol. 7. Elsevier; 2000. p. 713–1018.
  • Le Tallec P. Domain decomposition methods in computational mechanics. Comput Mech Adv. 1994;1(2):122–220.
  • Toselli A, Widlund O. Domain decomposition methods – algorithms and theory. Vol. Berlin: Springer; 2005.
  • Mathew TPA. Domain decomposition methods for the numerical solution of partial differential equations. Vol. Berlin: Springer; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.