129
Views
7
CrossRef citations to date
0
Altmetric
Articles

The SMGT equation from the boundary: regularity and stabilization

, & ORCID Icon
Pages 1735-1773 | Received 05 Mar 2021, Accepted 15 Oct 2021, Published online: 30 Nov 2021

References

  • Jordan P. An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation. Physics Letters A. 2004;326:77–84.
  • Jordan P. Nonlinear acoustic phenomena in viscous thermally relaxing fluids: shock bifurcation and the emergence of diffusive solitons. J Acoustic Soc Amer. 2008;124(4):2491–2491.
  • Moore FK, Gibson WE. Propagation of weak disturbances in a gas subject to relaxation effects. J Aero/Space Sci. 1960;27:117–127.
  • Stokes GG. An examination of the possible effect of the radiation of heat on the propagation of sound. Philos Mag Ser. 1851;1(4):305–317.
  • Thompson PA. Compressible-fluid dynamics. New York: McGraw-Hill; 1972.
  • Marchand R, McDevitt T, Triggiani R. An abstract semigroup approach to the third-order MGT equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math Methods Appl Sci. 2012;35:1896–1929.
  • Triggiani R. Sharp interior and boundary regularity of the SMGTJ-equation with Dirichlet or Neumann boundary control. In Semigroup of operators – theory and applications. Springer Proceedings in Mathematics & Statistics. Vol. 325. Springer International Publishing; 2020. p. 379–426.
  • Kaltenbacher B, Lasiecka I, Marchand R. Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Control Cyber. 2011;40:971–988.
  • Liu S, Triggiani R. An inverse problem for a third order PDE arising in high-intensity ultrasound: global uniqueness and stability by one boundary measurement. J Inverse Ill-Posed Proble. 2013;21:825–869.
  • Kaltenbacher B, Lasiecka I, Pospieszalska M. Well-posedness and exponential decay of the energy in the nonlinear Jordan–Moore–Gibson–Thompson equation arising in high intensity ultrasound. Math Methods Appl Sci. 2012;22(11):1250035.
  • Taylor M. Partial differential equations II: qualitative studies of linear equations. New York (NY): Springer-Verlag; 1996. p. 529. (Applied Mathematical Sciences).
  • Conejero JA, Lizama C, Ródenas Escribá F. Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation. Appl Math Inf Sc. 2015;9(N5):2233–2238.
  • Lasiecka I, Lions J-L, Triggiani R. Nonhomogeneous boundary value problems for second order hyperbolic operators. J Math Pures Appl. 1986;65:149–192.
  • Lasiecka I, Triggiani R. Regularity of hyperbolic equations under L2(0,T;L2(Ω))-Dirichlet boundary terms. Appl Math Optim. 1983;10:275–286.
  • Lasiecka I, Triggiani R. Control theory for partial differential equations: continuous and approximation theories, Vol I: Abstract parabolic systems (644 pp.); Vol II: Abstract hyperbolic systems over a finite time horizon (422 pp.). Encyclopedia of Mathematics and Its Applications Series. Cambridge University Press; Jan 2000.
  • Lasiecka I, Triggiani R. A cosine operator approach to modeling L2(0,T;L2(Ω)) boundary input hyperbolic equations. Appl Math Optim. 1981;7:35–83.
  • Lions JL, Magenes E. Nonhomogeneous boundary value problems and applications I. New York (NY): Springer-Verlag; 1972.
  • Triggiani R. A cosine operator approach to modeling boundary input problems for hyperbolic systems. Springer-Verlag Lect Notes Control Inform Sci. 1978;6:380–390.
  • Fattorini HO. Second order linear differential equations in Banach spaces. North-Holland: Amsterdam; 1985.
  • Sova M. Cosine operator functions. Vol. 49. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk; 1966.
  • Travis CC, Webb G. Second order differential equations in Banach space. In: Lakshmikantham V, editor. Nonlinear equations in abstract spaces. London: Academic Press; 1978. p. 331–361.
  • Lasiecka I, Triggiani R. Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations. J Differ Eqn. 1983;47:246–272.
  • Lasiecka I, Triggiani R. Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl Math Optim. 1992;25:189–224.
  • Bucci F, Pandolfi L. On the regularity of solutions to the Moore–Gibson–Thompson equation: a perspective via wave equations with memory. J Evol Equ. 2020;20(3):837–867.
  • Tataru D. On the regularity of boundary traces for the wave equation. Ann Sc Norm Super Pisa Cl Sci. 1998;26(4):185–206.
  • Bucci F, Eller M. The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation. CR Math Acad Sci Paris. 2021;359(7):881–903.
  • Klibanov MV. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J Inverse Ill-Posed Probl. 2013;21:477–560.
  • Klibanov MV, Timonov AA. Carleman estimates for coefficient inverse problems and numerical applications. Urecht-Boston; 2004. p. 282. (Inverse and Ill-posed problem series).
  • Lasiecka I, Triggiani R, Yao PF. An observability estimate in L2(Ω)×H−1(Ω) for second-order hyperbolic equations with variable coefficients. In Control of distributed parameter and stochastic systems; 1999. p. 71–78.
  • Lasiecka I, Triggiani R, Yao PF. Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J Math Anal Appl. 1999;235(1):13–57.
  • Lasiecka I, Triggiani R, Zhang X. Nonconservative wave equations with unobserved Neumann BC: global uniqueness and observability in one shot. Contemp Math. 2000;268:227–326.
  • Triggiani R, Yao PF. Carleman estimates with no lower-order terms for general Riemann wave equations. global uniqueness and observability in one shot. Appl Math Optim. 2002;46(2):331–375.
  • Bongarti M, Lasiecka I. Boundary stabilization of the linear MGT equation with feedback Neumann control. DSOCIP; 2021.
  • Lasiecka I, Triggiani R. Sharp regularity for mixed second order hyperbolic equations of Neumann type. Part I: the L2-boundary case. Ann Mat Pura Appl. 1990;157(4):285–367.
  • Lasiecka I, Triggiani R. Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. II. General boundary data. J Differ Eqn. 1991;94:112–164.
  • Lasiecka I, Triggiani R. Exact controllability of the wave equation with Neumann boundary control. Appl Math Optim. 1989;19(1):243–290.
  • Balakrishnan AV. Applied functional analysis. 2nd ed. New York (NY): Springer-Verlag; 1981.
  • Aubin JP. Un théorème de compacité. CR Acad Sc. 1963;256:5052–5044.
  • Simon J. Compact sets in the sapce Lp(0,T;B). Ann di Mat Pura ed Appl. 1987;146(4):65–96.
  • Komornick V. Exact controlability and stabilization: the multiplier method. Paris: Masson; 1994. 156.
  • Arendt W. Countable spectrum, transfinite induction and stability. In: Arendt W, Chill R, Tomilov Y. editors. Operator semigroups meet complex analysis, harmonic analysis and mathematical physics. Operator Theory: Advances and Applications. Vol 250. Birkhäuser; 2015. p. 31–48.
  • Arendt W, Batty CJK. Tauberian theorems and stability of one-parameter semigroups. Trans Amer Math Soc. 1988;306(2):837–852.
  • Lyubich YI, Phóng VQ. Asymptotic stability of linear differential equations in Banach spaces. Stud Math. 1988;88(1):37–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.