Publication Cover
Applicable Analysis
An International Journal
Volume 103, 2024 - Issue 1
77
Views
3
CrossRef citations to date
0
Altmetric
Research Article

On the absence of global weak solutions for a nonlinear time-fractional Schrödinger equation

, , ORCID Icon &
Pages 1-15 | Received 02 Jan 2022, Accepted 25 Jan 2022, Published online: 18 Oct 2023

References

  • Abbas MI, Ragusa MA. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry. 2021;13(2):264. doi: 10.3390/sym13020264
  • Bagley RL, Torvik PL. On the fractional calculus models of viscoelastic behaviour. J Rheol. 1986;30(1):133–155. doi: 10.1122/1.549887
  • Hilfer R. Applications of fractional calculus in physics. New Jersey: World Scientific; 2001.
  • Ionescu C, Lopes A, Copot D, et al. The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci Numer Simul. 2017;51:141–159. doi: 10.1016/j.cnsns.2017.04.001
  • Laskin N. Fractional quantum mechanics and Lévy integral. Phys Lett. 2000;268(4-6):298–305. doi: 10.1016/S0375-9601(00)00201-2
  • Magin RL, Ovadia M. Modeling the cardiac tissue electrode interface using fractional calculus. J Vib Control. 2008;14(9-10):1431–1442. doi: 10.1177/1077546307087439
  • Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solit Fractals. 1996;7(9):1461–1477. doi: 10.1016/0960-0779(95)00125-5
  • Arqub OA. Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space. Fundam Inform. 2019;166(2):87–110. doi: 10.3233/FI-2019-1795
  • Dong J, Xu M. Solutions to the space fractional Schrödinger equation using momentum representation method. J Math Phys. 2007;48:Article ID 072105.
  • Guo X, Xu M. Some physical applications of fractional Schrödinger equation. J Math Phys. 2006;47:Article ID 82104.
  • Laskin N. Fractional Schrödinger equation. Phys Rev E. 2002;66(5):Article ID 056108. doi: 10.1103/PhysRevE.66.056108
  • Li M, Huang C, Wang P. Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer Algor. 2017;74(2):499–525. doi: 10.1007/s11075-016-0160-5
  • Naber MG. Time fractional Schrödinger equation. J Math Phys. 2004;45(8):3339–3352. doi: 10.1063/1.1769611
  • Ran M, Zhang C. A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun Nonlinear Sci Numer. 2016;41:64–83. doi: 10.1016/j.cnsns.2016.04.026
  • Wang S, Xu M. Generalized fractional Schrödinger equation with space-time fractional derivatives. J Math Phys. 2007;48:Article ID 043502.
  • Wang JR, Zhou Y, Wei W. Fractional Schrödinger equations with potential and optimal controls. Nonlinear Anal: RWA. 2012;13(6):2755–2766. doi: 10.1016/j.nonrwa.2012.04.004
  • Kirane M, Nabti A. Life span of solutions to a nonlocal in time nonlinear fractional Schrödinger equation. Z Angew Math Phys. 2015;66(4):1473–1482. doi: 10.1007/s00033-014-0473-y
  • Zhang Q, Sun HR, Li Y. The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance. Appl Math Lett. 2017;64:119–124. doi: 10.1016/j.aml.2016.08.017
  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Vol. 204. Amsterdam: Elsevier Science B.V.; 2006.
  • Fujita H. On the blowing up of solutions to the Cauchy problem for ut=Δu+u1+α. J Fac Sci Univ Tokyo, Sect 1A, Math. 1966;13:199–124.
  • Ikeda M, Wakasugi Y. Small data blow-up of L2-solution for the nonlinear Schr o¨dinger equation without gauge invariance. Diff Int Equ. 2013;26:1275–1285.
  • Ikeda M, Inui T. Small data blow-up of L2 or H1-solution for the semilinear Schr o¨dinger equation without gauge invariance. J Evol Equ. 2015;15(3):571–581. doi: 10.1007/s00028-015-0273-7
  • Agrawal OP. Generalized multiparameters fractional variational calculus. Int J Differ Equ. 2012;2012:Article ID 521750.
  • Mitidieri E, Pohozaev SI. A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Proc Steklov Inst Math. 2001;234:1–383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.