Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 10
155
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Semi-classical solutions for generalized quasilinear Schrödinger equations with nonlocal term and upper critical exponent

, & ORCID Icon
Pages 2724-2754 | Received 16 Jun 2021, Accepted 25 Jan 2022, Published online: 11 Feb 2022

References

  • Li Q, Wu X. Multiple solutions for generalized quasilinear Schrödinger equations. Math Methods Appl Sci. 2017;40:1359–1366.
  • Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 2013;80:194–201.
  • Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J Differ Equ. 2016;260:1228–1262.
  • Li Q, Wu X. Existence, multiplicity, and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth. J Math Phys. 2017;58:041501.
  • Li Q, Wu X. Existence of nontrivial solutions for generalized quasilinear Schrödinger equations with critical or supercritical growths. Acta Math Sci. 2017;37:1870–1880.
  • Litvak AG. Self-focusing of powerful light beams by thermal effects. JETP Lett. 1966;4:230–232.
  • Bergé L, Couairon A. Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Phys Plasmas. 2000;7:210–230.
  • Dalfovo F, Giorgini S, Pitaevskii LP, et al. Theory of Bose-Einstein condensation in trapped gases. Rev Mod Phys. 1999;71:463–512.
  • Pekar S. Untersuchungen über die Elektronentheorie der Kristalle. Berlin: Akademie Verlag; 1954.
  • Lieb EH. Existence and uniqueness of the minimizing solution of Choquard' nonlinear equation. Stud Appl Math. 1976/1977;57:93–105.
  • Penrose R. On gravity's role in quantum state reduction. Gen Relativ Gravitat. 1996;28:581–600.
  • Lions PL. The Choquard equation and related questions. Nonlinear Anal. 1980;4:1063–1072.
  • Wei J, Winter M. Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys. 2009;50:012905.
  • Ma L, Zhao L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal. 2010;195:455–467.
  • Ruiz D, Van Schaftingen J. Odd symmetry of least energy nodal solutions for the Choquard equation. J Differ Equ. 2018;264:1231–1262.
  • Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys. 2012;63:233–248.
  • Moroz V, Van Schaftingen J. Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal. 2013;265:153–184.
  • Moroz V, Van Schaftingen J. Existence of groundstates for a class of nonlinear Choquard equations. Trans Am Math Soc. 2015;367:6557–6579.
  • Moroz V, Van Schaftingen J. Semi-classical states for the Choquard equation. Calc Var Partial Differ Equ. 2015;52:199–235.
  • Alves CO, Cassani D, Tarsi C, et al. Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in R2. J Differ Equ. 2016;261:1933–1972.
  • Alves CO, Yang M. Multiplicity and concentration of solutions for a quasilinear Choquard equation. J Math Phys. 2014;55:061502.
  • Clapp M, Salazar D. Positive and sign changing solutions to a nonlinear Choquard equation. J Math Anal Appl. 2013;407:1–15.
  • Ghimenti M, Van Schaftingen J. Nodal solutions for the Choquard equation. J Funct Anal. 2016;271:107–135.
  • Alves CO, Yang M. Existence of semiclassical ground state solutions for a generalized Choquard equation. J Differ Equ. 2014;257:4133–4164.
  • Alves CO, Yang M. Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method. Proc Roy Soc Edinburgh Sect A. 2016;146:23–58.
  • Guo L, Hu T, Peng S, et al. Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. Calc Var Partial Differ Equ. 2019;58:34.
  • Moroz V, Van Schaftingen J. Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math. 17(5). 2015;12:1550005.
  • Benci V, Cerami G. Existence of positive solutions of the equation −Δu+a(x)u=uN+2N−2 in RN. J Funct Anal. 1990;88:90–117.
  • Chen S, Zhang B, Tang X. Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv Nonlinear Anal. 2020;9:148–167.
  • Tang X, Chen S. Ground state solutions of Nehari-Pohoaev type for Kirchhoff-type problems with general potentials. Calc Var Partial Differ Equ. 2017;56:110.
  • Tang X, Cheng B. Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J Differ Equ. 2016;261:2384–2402.
  • Xiang M, Rădulescu V, Zhang B. Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities. ESAIM Control Optim Calc Var. 2018;24:1249–1273.
  • Xiang M, Rădulescu V, Zhang B. A critical fractional Choquard-Kirchhoff problem with magnetic field. Commun Contemp Math. 2019;21:1850004.
  • Xiang M, Rădulescu V, Zhang B. Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc Var Partial Differ Equ. 2019;58:57.
  • Rabinowitz P. On a class of nonlinear Schrödinger equations. Z Ang Math Phys. 1992;43:270–291.
  • Trudinger NS. On Harnack type inequalities and their applications to quasilinear elliptic equations. Commun Pure Appl Math. 1967;20:721–747.
  • Chen S, Wu X. Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type. J Math Anal Appl. 2019;475:1754–1777.
  • Yang X, Zhang W, Zhao F. Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method. J Math Phys. 2018;59:081503.
  • Lieb EH, Loss M. Analysis, 2nd ed. Providence, RI: Amer. Math. Soc.; 2001 (Grad. Stud. Math.; Vol.14).
  • Aires JFL, Souto MAS. Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials. J Math Anal Appl. 2014;416:924–946.
  • He X, Zou W. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J Differ Equ. 2012;252:1813–1834.
  • Wang J, Tian L, Xu J, et al. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differ Equ. 2012;253:2314–2351.
  • Wang Y, Zou W. Bound states to critical quasilinear Schrödinger equations. Nonlinear Differ Equ Appl. 2012;19:19–47.
  • Willem M. Minimax theorem. Boston (MA); Birkhäuser Boston, Inc.; 1996.
  • Peral I. Multiplicity of solutions for the p-Laplacian. Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP of Trieste, April 21–May 9, 1997.
  • Shang X, Zhang J. Ground states for fractional Schrödinger equations with critical growth. Nonlinearity. 2014;27:187–207.
  • Tao F, Wu X. Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth. Nonlinear Anal. 2017;35:158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.