Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 10
147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Smooth solution for incompressible Navier–Stokes equations with large initial

ORCID Icon
Pages 2866-2881 | Received 27 Nov 2021, Accepted 07 Feb 2022, Published online: 16 Feb 2022

References

  • Leray J. Sur le mouvement ĺun liquide visqueux emplissant ĺespace. Acta Math. 1934;63:193–248.
  • Leray J. Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l'hydrodynamique. J Math, Pures Et Appliquées. 1933;12:1–82.
  • Hopf E. Über die anfangswertaufgabe für die hydrodynamischen grundgleichun-gen. Math Nachrichten. 1950;51:213–231.
  • Fujita H, Kato T. On the Navier–Stokes initial value problem I. Arc Rat Mech Anal. 1964;16:269–315.
  • Chemin JM. Remarques sur ĺsexistence globale pour le systéme de Navier–Stokes incompressible. SIAM J Math Anal. 1992;23:20–28.
  • Kato T. Strong Lp solutions of the Navier–Stokes equations in Rm, with applications to weak solutions. Math Z. 1984;187:471–480.
  • Giga Y, Miyakawa T. Solutions in Lr of the Navier–Stokes initial value problem. Arch Rat Mech Anal. 1985;89:267–281.
  • Weissler FB. The Navier–Stokes initial value problem in Lp. Arch Rat Mech Anal. 1980;74:219–230.
  • Cannone M, Meyer Y, Planchon F. Solutions auto-similaires des équations de Navier–Stokes. In Éminaire sur les Équations aux Dérivées Par-tielles, Vol. 12. Palaiseau: École Polytech.; 1994.
  • Koch H, Tataru D. Well-posedness for the Navier–Stokes equations. Adv Math. 2001;157:22–35.
  • Cannone M. Ondelettes, paraproduits et Navier–Stokes. Paris: Diderot editeur, Arts et Sciences; 1995.
  • Planchon F. Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in R3. Ann l'Ins Henri Poincare. 1996;13:319–336.
  • Lei Z, Lin F. Global mild solutions of the Navier–Stokes equations. Comm Pure Appl Math. 2011;64:1297–1304.
  • Raugel G, Sell GR. Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. J Amer Math Soc. 1993;6:503–568.
  • Iftimie D, Raugel G, Sell GR. Navier–Stokes equations in thin 3D domains with Navier boundary conditions. Indiana Univ Math J. 2007;56:1083–1156.
  • Makhalov AS, Nikolaenko VP. Global solvability of three dimensional Navier–Stokes equations with uniformly high initial vorticity. Us- pekhi Mat Nauk. 2003;58:79–110.
  • Chemin JY, Gallagher I. On the global wellposedness of the 3-D Navier–Stokes equations with large initial data. Ann Sci École Norm Sup. 2006;39:679–698.
  • Chemin JY, Gallagher I. Well-posedness and stability results for the Navier–Stokes equations in R3. Ann Inst H Poincaré Anal Non Linéaire. 2009;26:599–624.
  • Chemin JY, Gallagher I. Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans Amer Math Soc. 2010;362:2859–2873.
  • Chemin JY, Gallagher I, Paicu M. Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann Math. 2011;173:983–1012.
  • Hou TY, Lei Z, Li C. Global regularity of the 3D axi-symmetric Navier–Stokes equations with anisotropic data. Comm Pure Appl Math. 2018;64:1297–1304.
  • Hajer BC, Chemin JY, Raphaël D. Fourier analysis and nonlinear partial differential equations. New York: Springer; 2011.
  • Willett D, Wong J. On the discrete analogues of some generalsations of Gronwall's inequality. Monatsh Math. 1965;69:362–367.
  • Strauss WA. Decay and asymptotic for utt−Δu=F(u). J Funct Anal. 1968;2:409–457.
  • Zhou Y. On regularity criteria in terms of pressure for the Navier–Stokes equations in R3. Proc Amer Math Soc. 2006;134:149–156.
  • Lin HX, Li S. Regularity criterion for solutions to the three-dimensional Navier–Stokes equations in the turbulent channel. J Math Anal Appl. 2014;420:1803–1813.
  • Geng F, Wang S, Wang Y. The regularity criteria and the a priori estimate on the 3D incompressible Navier–Stokes equations in orthogonal curvilinear coordinate systems. J Function Spaces. 2020;2020:2816183.
  • Goodrich CS, Ragusa MA, Scapellato A. Partial regularity of solutions to p(x)-Laplacian PDEs with discontinuous coeffcients. J Differ Equations. 2020;268:5440–5468.
  • Ragusa MA, Wu F. Regularity criteria for the 3D magnetohydrodynamics equations in anisotropic Lorentz spaces. Symmetry. 2021;13:625.
  • Ragusa MA, Wu F. Regularity criteria via one directional derivative of the velocity in anisotropic Lebesgue spaces to the 3D Navier–Stokes equations. J Math Anal Appl. 2021;502:125–286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.