Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 11
80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The local characterizations of the singularity formation for the MHD equations

&
Pages 2903-2924 | Received 04 Nov 2021, Accepted 07 Feb 2022, Published online: 25 Feb 2022

References

  • Benia Y, Scapellato A. Existence of solution to Korteweg–de Vries equation in a non-parabolic domain. Nonlinear Anal. 2020;195:111758.
  • Benia Y, Sadallah B. A semilinear problem related to Burgers' equation. Appl Anal. 2021;1–20.
  • Cabannes H. Theoretical magnetofluiddynamics. New York: Academic Press; 1970.
  • Duvaut G, Lions JL. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Ration Mech Anal. 1972;46(4):241–279.
  • Sermange M, Temam R. Some mathematical questions related to the MHD equations. Commun Pure Appl Math. 1983;36(5):635–664.
  • Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 1934;63:193–248.
  • Escauriaza L, Seregin G, Sverak V. L3,∞-solutions of the Navier–Stokes equations and backward uniqueness. Russian Math Surv. 2003;58(2):211–250.
  • Prodi G. Un teorema di unicità per le equazioni di Navier–Stokes. Ann Mat Pura Appl. 1959;48(1):173–182.
  • Serrin J. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch Ration Mech Anal. 1962;9(1):187–195.
  • Tao T. Quantitative bounds for critically bounded solutions to the Navier–Stokes equations. arXiv preprint arXiv:1908.04958. 2019.
  • Kim H, Kozono H. Interior regularity criteria in weak spaces for the Navier–Stokes equations. Manuscr Math. 2004;115(1):85–100.
  • He C, Wang Y. Limiting case for the regularity criterion of the Navier–Stokes equations and the magnetohydrodynamic equations. Sci China Math. 2010;53(7):1767–1774.
  • Wang W, Zhang Z. On the interior regularity criteria and the number of singular points to the Navier–Stokes equations. J Anal Math. 2014;123(1):139–170.
  • Tan W, Yin Z. The energy conservation and regularity for the Navier–Stokes equations. arXiv preprint arXiv:2107.04157. 2021
  • Scheffer V. Hausdorff measure and the Navier–Stokes equations. Commun Math Phys. 1977;55(2):97–112.
  • Scheffer V. The Navier–Stokes equations in space dimension four. Commun Math Phys. 1978;61(1):41–68.
  • Scheffer V. The Navier–Stokes equations on a bounded domain. Commun Math Phys. 1980;73(1):1–42.
  • Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun Pure Appl Math. 1982;35(6):771–831.
  • Lin F. A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun Pure Appl Math. 1998;51(3):241–257.
  • Choe HJ, Lewis JL. On the singular set in the Navier–Stokes equations. J Funct Anal. 2000;175(2):348–369.
  • He C, Xin Z. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differ Equ. 2005;213(2):235–254.
  • Alghamdi A, Gala S, Ragusa M. On the blow-up criterion for incompressible Stokes–MHD equations. Results Math. 2018;73(3):1–6.
  • Cao C, Titi E. Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor. Arch Ration Mech Anal. 2011;202(3):919–932.
  • Cao C, Wu J. Two regularity criteria for the 3D MHD equations. J Differ Equ. 2010;248(9):2263–2274.
  • Chae D. On the regularity conditions of suitable weak solutions of the 3D Navier–Stokes equations. J Math Fluid Mech. 2010;12(2):171–180.
  • Chae D, Wolf J. On the Serrin-type condition on one velocity component for the Navier–Stokes equations. Arch Ration Mech Anal. 2021;240(3):1323–1347.
  • Da Veiga HB. A new regularity class for the Navier–Stokes equations in Rn. Chinese Ann Math Ser B. 1995;16(4):407–412.
  • Gala S, Ragusa MA. A logarithmic regularity criterion for the two-dimensional MHD equations. J Math Anal Appl. 2016;444(2):1752–1758.
  • Kang K, Kim J. Regularity criteria of the magnetohydrodynamic equations in bounded domains or a half space. J Differ Equ. 2012;253(2):764–794.
  • Lin H, Du L. Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions. Nonlinearity. 2012;26(1):219.
  • Miller E. A regularity criterion for the Navier–Stokes equation involving only the middle eigenvalue of the strain tensor. Arch Ration Mech Anal. 2020;235(1):99–139.
  • Wu F. Conditional regularity for the 3D Navier–Stokes equations in terms of the middle eigenvalue of the strain tensor. Evol Equ Control Theory. 2021;10(3):511–518.
  • Zhang Z, Chen Q. Regularity criterion via two components of vorticity on weak solutions to the Navier–Stokes equations in R3. J Differ Equ. 2005;216(2):470–481.
  • He C, Xin Z. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal. 2005;227(1):113–152.
  • Kang K, Lee J. Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J Differ Equ. 2009;247(8):2310–2330.
  • Wang W, Zhang Z. On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J Math Anal. 2013;45(5):2666–2677.
  • Koch G, Nadirashvili N, Seregin G, et al. Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 2009;203(1):83–105.
  • Chen C, Strain R, Yau H, et al. Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Int Math Res Notices. 2008;2008:31. Article ID rnn016. doi:10.1093/imrn/rnn016.
  • Chen C, Strain R, Tsai T, et al. Lower bounds on the blow-up rate of the axisymmetric Navier–Stokes equations II. Commun Partial Differ Equ. 2009;34(3):203–232.
  • Seregin G. A certain necessary condition of potential blow up for Navier–Stokes equations. Commun Math Phys. 2012;312(3):833–845.
  • Albritton D, Barker T. Localised necessary conditions for singularity formation in the Navier–Stokes equations with curved boundary. J Differ Equ. 2020;269(9):7529–7573.
  • Merle F, Tsutsumi Y. L2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J Differ Equ. 1990;84(2):205–214.
  • Hmidi T, Keraani S. Remarks on the blowup for the L2-critical nonlinear Schrödinger equations. Siam J Math Anal. 2006;38(4):1035–1047.
  • Holmer J, Roudenko S. On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl Math Res Express. 2007;2007:29. Article ID 004. doi:10.1093/amrx/abm004.
  • Li K, Ozawa T, Wang B. Dynamical behavior for the solutions of the Navier–Stokes equation. arXiv preprint arXiv:1608.06680. 2016.
  • Maekawa Y, Miura H, Prange C. Estimates for the Navier–Stokes equations in the half-space for nonlocalized data. Anal PDE. 2020;13(4):945–1010.
  • Barker T, Prange C. Localized smoothing for the Navier–Stokes equations and concentration of critical norms near singularities. Arch Ration Mech Anal. 2020;236(3):1487–1541.
  • Tan W. The localized characterization for the singularity formation in the Navier–Stokes equations. arXiv preprint arXiv:2107.04597. 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.