145
Views
6
CrossRef citations to date
0
Altmetric
Articles

Modelling virus contact mechanics under atomic force imaging conditions

, , &
Pages 3947-3957 | Received 21 Dec 2021, Accepted 10 Feb 2022, Published online: 26 Feb 2022

References

  • Sloan ED. Fundamental principles and applications of natural gas hydrates. Nature. 2003 Nov;426(6964):353–359. DOI:10.1038/nature02135
  • Greber UF. How cells tune viral mechanics–insights from biophysical measurements of influenza virus. Biophys J. 2014 Jun;106(11):2317–2321. DOI:10.1016/j.bpj.2014.04.025
  • Guerra P, Valbuena A, Querol-Audí J, et al. Structural basis for biologically relevant mechanical stiffening of a virus capsid by cavity-creating or spacefilling mutations. Sci Rep. 2017 Dec;7(1):4101. DOI:10.1038/s41598-017-04345-w
  • Zeng C, Hernando-Pérez M, Dragnea B, et al. Contact mechanics of a small icosahedral virus. Phys Rev Lett. 2017 Jul;119(3):Article ID 038102.DOI:10.1103/PhysRevLett.119.038102
  • Zeng C, Scott L, Malyutin A, et al. Virus mechanics under molecular crowding. J Phys Chem B. 2021 Feb;125(7):1790–1798. DOI:10.1021/acs.jpcb.0c10947
  • Prevelige PE, Thomas D, King J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J. 1993 Mar;64(3):824–835.
  • Zlotnick A, Johnson JM, Wingfield PW, et al. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry. 1999 Nov;38(44):14644–14652.
  • Dragnea B. Watching a virus grow. 2019 Nov. Available from: https://www.pnas.org/content/116/45/22420.short?rss=1.
  • Zlotnick A. Distinguishing reversible from irreversible virus capsid assembly. J Mol Biol. 2007 Feb;366(1):14–18.
  • Aggarwal A, Rudnick J, Bruinsma RF, et al. Elasticity theory of macromolecular aggregates. Phys Rev Lett. 2012 Oct;109(14):Article ID 148102. DOI:10.1103/PhysRevLett.109.148102
  • Zandi R, Reguera D. Mechanical properties of viral capsids. Phys Rev E. 2005 Aug;72(2):Article ID 021917.DOI:10.1103/PhysRevE.72.021917
  • Ivanovska IL, de Pablo PJ, Ibarra B, et al. Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci. 2004 May;101(20):7600–7605. DOI:10.1073/pnas.0308198101
  • Michel JP, Ivanovska IL, Gibbons MM, et al. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci. 2006 Apr;103(16):6184–6189. DOI:10.1073/pnas.0601744103
  • Roos WH. How to perform a nanoindentation experiment on a virus. Methods Mol Biol. 2011 Jan;783:251–264. DOI:10.1007/978-1-61779-282-3_14
  • Thompson WC, Cattani AJ, Lee O, et al. A laboratory model for virus particle nanoindentation. Biophysicist. 2020 Jan;1(2):DOI:10.35459/tbp.2019.000106
  • Bruinsma RF, Klug WS. Physics of viral shells. Annu Rev Condens Matter Phys. 2015 Mar;6(1):245–268. DOI:10.1146/annurev-conmatphys-031214-014325
  • Gibbons MM, Klug WS. Mechanical modeling of viral capsids. J Mater Sci. 2007 Jul;42(21):8995–9004. DOI:10.1007/s10853-007-1741-4
  • Arkhipov A, Roos WH, Wuite GJL, et al. Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys J. 2009 Oct;97(7):2061–2069. DOI:10.1016/j.bpj.2009.07.039
  • Krishnamani V, Globisch C, Peter C, et al. Breaking a virus: identifying molecular level failure modes of a viral capsid by multiscale modeling. Eur Phys J Spec Top. 2016 Jul;1–18. DOI:10.1140/epjst/e2016-60141-2
  • Mannige RV, Brooks CL. Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling. Proc Natl Acad Sci. 2009 May;106(21):8531–8536. DOI:10.1073/pnas.0811517106
  • Vliegenthart GA, Gompper G. Mechanical deformation of spherical viruses with icosahedral symmetry. Biophys J. 2006 Aug;91(3):834–841. DOI:10.1529/biophysj.106.081422
  • Ciarlet PG, Piersanti P. Obstacle problems for Koiter's shells. Math Mech Solids. 2019;24:3061–3079.
  • Ciarlet PG, Piersanti P. A confinement problem for a linearly elastic Koiter's shell. C R Math. 2019;357:221–230.
  • Ciarlet PG, Mardare C, Piersanti P. Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique. C R Math. 2018;356(10):1040–1051.
  • Ciarlet PG, Mardare C, Piersanti P. An obstacle problem for elliptic membrane shells. Math Mech Solids. 2019;24(5):1503–1529.
  • Piersanti P. On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell subject to an obstacle. Asymptot Anal. 2021;127:1–21.
  • Piersanti P, Shen X. Numerical methods for static shallow shells lying over an obstacle. Numer Algorithms. 2020;85623–652.
  • Piersanti P. A time-dependent obstacle problem in linearised elasticity. Nonlinear Anal. 2020;192:Article ID 111660.
  • Piersanti P, White K, Dragnea B, et al. A three-dimensional discrete model for approximating the deformation of a viral capsid subjected to lying over a flat surface. In preparation. Preprint arxiv. https://arxiv.org/abs/2202.05625
  • Baclayon M, Wuite GJL, Roos WH. Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter. 2010;6(21):5273–5285. DOI:10.1039/b923992h
  • Calo A, Eleta-Lopez A, Ondarcuhu T, et al. Nanoscale wetting of single viruses. Molecules. 2021 Aug;26(17):5184.DOI:10.3390/molecules26175184
  • Cartagena A, Hernando-Pérez M, Carrascosa JL, et al. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy. Nanoscale. 2013;5(11):4729. DOI:10.1039/c3nr34088k
  • Kuznetsov YG, McPherson A. Atomic force microscopy investigation of viruses. Methods Mol Biol. 2011 Apr;736(4):171–195.
  • Castellanos M, Pérez R, Carrasco C, et al. Mechanical elasticity as a physical signature of conformational dynamics in a virus particle. Proc Natl Acad Sci. 2012 Jul;109(30):12028–12033. DOI:10.1073/pnas.1207437109
  • Kononova O, Snijder J, Brasch M, et al. Structural transitions and energy landscape for cowpea chlorotic mottle virus capsid mechanics from nanomanipulation in vitro and in silico. Biophys J. 2013 Oct;105(8):1893–1903. DOI:10.1016/j.bpj.2013.08.032
  • Mateu MG. Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective. Virus Res. 2012 Sep;168(1–2):1–22. DOI:10.1016/j.virusres.2012.06.008
  • Pang H-B, Hevroni L, Kol N, et al. Virion stiffness regulates immature HIV-1 entry. Retrovirology. 2013 Jan;10:4.DOI:10.1186/1742-4690-10-4
  • Snijder J, Reddy VS, May ER, et al. Integrin and defensin modulate the mechanical properties of adenovirus. J Virol. 2013 Mar;87(5):2756–2766. DOI:10.1128/JVI.02516-12
  • Kiselev AP. Geometry. Book I. Planimetry. Sumizdat; 2006.
  • Temam R, Miranville A. Mathematical modeling in continuum mechanics. 2nd ed. Cambridge: Cambridge University Press; 2005.
  • Quarteroni A, Saleri F, Gervasio P. Scientific computing with MATLAB and octave. Berlin: Springer-Verlag; 2010. (Texts in computational science and engineering; vol. 2).
  • Strang G. Linear algebra and its applications. 2nd ed. New York: Academic Press; 1980.
  • Ekeland I, Temam R. Convex analysis and variational problems. english ed. Translated from the French. Philadelphia (PA): Society for Industrial and Applied Mathematics (SIAM); 1999. (Classics in applied mathematics; vol. 28).
  • Duvaut G, Lions J-L. Inequalities in mechanics and physics. Berlin: Springer; 1976.
  • Sun W, Yuan Y-X. Optimization theory and methods: nonlinear programming. New York: Springer; 2006. (Springer optimization and its applications; vol. 1).
  • Somorjai GA. Introduction to surface chemistry and catalysis. New York: John Wiley & Sons; 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.