181
Views
1
CrossRef citations to date
0
Altmetric
Articles

Well-posedness of a mathematical model of diabetic atherosclerosis with advanced glycation end-products

Pages 3989-4013 | Received 29 Oct 2021, Accepted 25 Mar 2022, Published online: 06 Apr 2022

References

  • Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–1422.
  • Douglas G, Channon KM. The pathogenesis of atherosclerosis. Medicine (Baltimore). 2014;42:480–484.
  • Lusis AJ. Atherosclerosis. Nature. 2000;407:233–241.
  • Parton A, McGilligan V, Baldrick FR, et al. Computational modelling of atherosclerosis. Brief Bioinform. 2016;17(4):562–575.
  • Averinos NA, Neofytou P. Mathematical modeling and simulation of atherosclerosis formation and progress: a review. Ann Biomed Eng. 2019;47(8):1764–1785.
  • Stanbro WD. Modeling the interaction of peroxynitrite with low-density lipoproteins II: reaction/diffusion model of peroxynitrite in low-density lipoprotein particles. J Theor Biol. 2000;205:465–471.
  • Cobbold CA, Sherratt JA, Maxwell SRJ. Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull Math Biol. 2002;64:65–95.
  • Cilla M, Pena E, Martinez MA. Mathematical modeling of atheroma plaque formation and development in coronary arteries. J R Soc Interface. 2013;11:Article ID 20130866.
  • Friedman A, Hao W. A mathematical model of atherosclerosis with reverse cholesterol transport and associated risk factors. Bull Math Biol. 2015;77:758–781.
  • Hao W, Friedman A. The LDL–HDL profile determines the risk of atherosclerosis: a mathematical model. PLoS ONE. 2014;9:1–15.
  • Fok PW. Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem. J Theor Biol. 2012;314:23–33.
  • Friedman A, Hao W, Hu B. A free boundary problem for steady small plaques in the artery and their stability. J Differ Equ. 2015;259:1227–1255.
  • Calvez V, Ebde A. Mathematical modeling of the atherosclerotic plaque formation. In: ESAIM Proceedings of CEMRACS 2008 – Modelling and Simulation Complex Fluids; 2010. p. 1–16.
  • Filipovic N, Teng Z, Radovic M, et al. Computer simulation of three-dimensional plaque formation and progression in the carotid artery. Med Biol Eng Comput. 2013;51:607–616.
  • Silva T, Sequeira A, Santos R, et al. Mathematical modeling of atherosclerotic plaque formation coupled with a non-Newtonian model of blood flow. Conf Pap Math. 2013;2013;1–14.
  • Tomaso G, Daz-Zuccarini V, Pichardo-Almarza C. A multiscale model of atherosclerotic plaque formation at its early stage. IEEE Trans Biomed Eng. 2011;58:3460–3463.
  • Reape T J, Groot P. Chemokines and atherosclerosis. Atherosclerosis. 1999;147:213–225.
  • Makroglou A, Li J, Kuang Y. Mathematical models and software tools for the glucose–insulin regulatory system and diabetes: an overview. Appl Numer Math. 2006;56:559–573.
  • Palumbo P, Ditlevsen S, Bertuzzi A, et al. Mathematical modeling of the glucose–insulin system: a review. Math Biosci. 2013;244:69–81.
  • Ha J, Satin LS, Sherman AS. A mathematical model of the pathogenesis, prevention, and reversal of type 2 diabetes. Endocrinology. 2016;157(2):624–635.
  • Ha J, Sherman A. Type 2 diabetes: one disease, many pathways. Am J Physiol Endocrinol Metab. 2020;319(2):E410–E426.
  • Beckman JA, Creager MA, Libby P. diabetes and atherosclerosis. JAMA. 2002;287:Article ID 19.
  • Williams SB, Cusco JA, Roddy M-A, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27:567–574.
  • Johnstone MT, Creager SJ, Scales KM, et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88:2510–2516.
  • Hennes MMI, O'Shaughnessy IM, Kelly TM, et al. Insulin resistant lypolisis in abdominally obese hypertensive individuals. Hypertension. 1996;28:120–126.
  • Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxsidase in cultured vascular cells. Diabetes. 2000;49:1939–1945.
  • Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17:121.
  • Singh R, Devi S, Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev. 2015;31:113–126.
  • Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004;279:42351–42354.
  • Schmidt AM, Du Yan S, Wautier JL, et al. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999;84:489–497.
  • Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280:685–694.
  • Chavakis T, Bierhaus A, Nawroth PP. RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect. 2004;6:1219–1225.
  • Chakravarthy U, Hayes RG, Stitt AW, et al. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes. 1998;47:945–952.
  • Quehenberger P, Bierhaus A, Fasching P, et al. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes. 2000;49:1561–1570.
  • Xu B, Chibber R, Ruggiero D, et al. Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products. FASEB J. 2003;17:1289–1291.
  • Johnson LA, Kim HS, Knudson MJ, et al. Diabetic atherosclerosis in APOE*4 mice: synergy between lipoprotein metabolism and vascular inflammation. J Lipid Res. 2013;54(2):386–396.
  • Getz GS, Reardon CA. Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1104–1115.
  • Boutayeb A, Chetouani A. A critical review of mathematical models and data used in diabetology. Biomed Eng Online. 2006;5:43.
  • Xie X. Well-posedness of a mathematical model of diabetic atherosclerosis. J Math Anal Appl. 2022;505(2):Paper no. 125606, 18 pp.
  • Soro-Paavonen A, Watson AMD, Li J, et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes. 2008;57:2461–2469.
  • Hamasaki S, Kobori T, Yamazaki Y, et al. Effects of scavenger receptors-1 class A stimulation on macrophage morphology and highly modified advanced glycation end product-protein phagocytosis. Sci Rep. 2018;8:5901.
  • Hanzawa E. Classical solutions of the Stefan problem. Tohoku Math J. 1981;33:297–335.
  • Lunardy A. Analytic semigroups and optimal regularity in parabolic problems. Basel (Switzerland): Birkhäuser; 1995.
  • Topp B, Promislow K, Devries G, et al. Model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol. 2000;206:605–619.
  • Raines EW, Ross R. Smooth muscle cells and the pathogenesis of the lesions of atherosclerosis. Br Heart J. 1993;69:30–37.
  • Byrne HM. The importance of intercellular adhesion in the development of carcinomas. IMA J Math Appl Med Biol. 1997;14:305–323.
  • Byrne HM. A weakly nonlinear analysis of a model of avascular solid tumour growth. J Math Biol. 1999;39:59–89.
  • Byrne HM, Chaplain MA. Modelling the role of cell–cell adhesion in the growth and development of carcinomas. Math Comput Model. 1996;24:1–7.
  • Poznyak A, Grechko AV, Poggio P, et al. The diabetes mellitus atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020;21:1835.
  • Harrington JR. The role of MCP-1 in atherosclerosis. Stem Cells. 2000;18:65–66.
  • Gaetano AD, Hardy T, Beck B, et al. Mathematical models of diabetes progression. Am J Physiol Endocrinol Metab. 2008;295:E1462–E1479.
  • Cui S. Well-posedness of a multidimensional free boundary problem modelling the growth of nonnecrotic tumors. J Funct Anal. 2007;245:1–18.
  • Ladyzhenskaya OA, Uraltseva NN. Linear and quasilinear elliptic equations. New York (NY): Academic Press; 1968.
  • Friedman A. Mathematical biology: modeling and analysis. Providence (RI): AMS; 2018. (CBMS regional conferences series in mathematics; 127).
  • Ross R, Masuda J, Raines EW, et al. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science. 1990;248:1009–1012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.