Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 12
80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Existence and asymptotic stability in a fractional chemotaxis system with competitive kinetics

, , &
Pages 3283-3314 | Received 12 Jul 2021, Accepted 28 Mar 2022, Published online: 14 Apr 2022

References

  • Horstmann D, Wang G. Blow-up in a chemotaxis model without symmetry assumptions. Eur J Appl Math. 2001;12:159–177.
  • Iorio R, Iorio V. Fourier analysis and partial differential equations. Cambridge: Cambridge University Press; 2001.
  • Horstmann D. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber Deutsch Math-Verein. 2003;105:103–165.
  • Horstmann D. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. II. Jahresber Deutsch Math-Verein. 2004;106:51–69.
  • Hillen T, Painter KJ. A user's guide to PDE models for chemotaxis. J Math Biol. 2009;58:183–217.
  • Espejo Arenas EE, Stevens A, Velázquez JJL. Simultaneous finite time blow-up in a two-species model for chemotaxis. Analysis (Munich). 2009;29:317–338.
  • Biler P, Espejo EE, Guerra I. Blowup in higher dimensional two species chemotactic systems. Commun Pure Appl Anal. 2013;12:89–98.
  • Conca C, Espejo E, Vilches K. Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in R2. Eur J Appl Math. 2011;22:553–580.
  • Horstmann D. Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J Nonlinear Sci. 2011;21:231–270.
  • Bai X, Winkler M. Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ Math J. 2016;65:553–583.
  • Garfinkel A, Tintut Y, Petrasek D, et al. Pattern formation by vascular mesenchymal cells. Proc Natl Acad Sci. 2004;101:9247–9250.
  • Escudero C. The fractional Keller–Segel model. Nonlinearity. 2006;19:2909–2918.
  • Bellomo N, Bellouquid A, Tao Y, et al. Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci. 2015;25:1663–1763.
  • Burczak J, Granero-Belinchón R. Critical Keller–Segel meets Burgers on S1: large-time smooth solutions. Nonlinearity. 2016;29:3810–3836.
  • Blanchet A. On the parabolic-elliptic Patlak–Keller–Segel system in dimension 2 and higher. Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2011–2012, Exp. No. VIII, 26 pp. 2013.
  • Liu JG, Yang R. Propagation of chaos for large Brownian particle system with Coulomb interaction. Res Math Sci. 2016;3:1–33.
  • Nanjundiah V. Chemotaxis, signal relaying and aggregation morphology. J Theor Biol. 1973;42:63–105.
  • Vázquez JL. Nonlinear diffusion with fractional Laplacian operators, arXiv:1401.3640 [math.AP].
  • Vázquez JL. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin Dyn Syst Ser S. 2014;7:857–885.
  • Zhu S, Liu Z, Zhou L. Decay estimates for the classical solution of Keller–Segel system with fractional Laplacian in higher dimensions. Appl Anal. 2020;99:447–461.
  • Ascasibar Y, Granero-Belinchón R, Moreno JM. An approximate treatment of gravitational collapse. Phys D. 2013;262:71–82.
  • Bournaveas N, Calvez V. The one-dimensional Keller–Segel model with fractional diffusion of cells. Nonlinearity. 2010;23:923–935.
  • Burczak J, Granero-Belinchón R. Boundedness and homogeneous asymptotics for a fractional logistic Keller–Segel equations. Discrete Contin Dyn Syst S. 2020;13:139–164.
  • Burczak J, Granero-Belinchón R. Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux. Topol Methods Nonlinear Anal. 2016;47:369–387.
  • Burczak J, Granero-Belinchón R. Global solutions for a supercritical drift-diffusion equation. Adv Math. 2016;295:334–367.
  • Burczak J, Granero-Belinchón R. On a generalized doubly parabolic Keller–Segel system in one spatial dimension. Math Models Methods Appl Sci. 2016;26:111–160.
  • Biler P, Wu G. Two-dimensional chemotaxis models with fractional diffusion. Math Methods Appl Sci. 2009;32:112–126.
  • Granero-Belinchón R. Global solutions for a hyperbolic-parabolic system of chemotaxis. J Math Anal Appl. 2017;449:872–883.
  • Granero-Belinchón R, Orive-Illera R. An aggregation equation with a nonlocal flux. Nonlinear Anal. 2014;108:260–274.
  • Huang H, Liu JG. Well-posedness for Keller–Segel equation with fractional laplacian and the theory of propagation of chaos. Kinet Relat Models. 2016;9:715–748.
  • Burczak J, Granero-Belinchón R. Suppression of blow up by a logistic source in 2D Keller–Segel system with fractional dissipation. J Differ Equ. 2017;263:6115–6142.
  • Lei Y, Liu Z, Zhou L. Existence and global asymptotic stability in a fractional double parabolic chemotaxis system with logistic source, (Preprint).
  • Lei Y, Liu Z, Zhou L. Global existence and asymptotic behavior of periodic solutions to a fractional chemotaxis system on the weakly competitive case. Bull Korean Math Soc. 2020;57:1269–1297.
  • Henry D. Geometric theory of semilinear parabolic equations. Berlin, Heidelberg, New York: Springer-Verlag; 1981.
  • Granero-Belinchón R. On the fractional fisher information with applications to a hyperbolic-parabolic system of chemotaxis. J Differ Equ. 2017;262:3250–3283.
  • Kenig C, Ponce G, Vega L. Well-posedness of the initial value problem for the Korteweg–de Vries equation. J Am Math Soc. 1991;4:323–347.
  • Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa Cl Sci. 1959;13(3):115–162.
  • Stinner C, Surulescu C, Winkler M. Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J Math Anal. 2014;46:1969–2007.
  • Hirata M, Kurima S, Mizukami M, et al. Boundedness and stabilization in a two-dimensional two-species chemotaxis-Navier-Stokes system with competitive kinetics. J Differ Equ. 2017;263:470–490.
  • Córdoba A, Córdoba D. A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc Natl Acad Sci USA. 2003;100:15316–15317.
  • Calderón AP, Zygmund A. Singular integrals and periodic functions. Stud Math. 1954;14:249–271.
  • Hsu SB. Limiting behavior for competing species. SIAM J Appl Math. 1978;34:760–763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.