106
Views
0
CrossRef citations to date
0
Altmetric
Articles

Modeling hemodialysis with albumin retention

, , &
Pages 4095-4112 | Received 28 Aug 2021, Accepted 09 May 2022, Published online: 03 Jun 2022

References

  • Fasano A, Sequeira A Hemomath: the mathematics of blood. Berlin: Springer; 2017.
  • Ronco C, Garzotto F, Kim JC, et al. Modeling blood filtration in hollow fibers dialyzers coupled with patient's body dynamics. Rend Lincei Mat Appl. 2016;27:369–412.
  • van Gelder MK, Abrahams AC, Joles JA, et al. Albumin handling in different hemodialysis modalities. Nephrol Dial Transplant. 2018;33:906–913.
  • Kaysen GA. Serum albumin concentration in dialysis patients: why does it remain resistant to therapy?: management of comorbidities in kidney disease in the 21st century: anemia and bone disease. Kidney Int. 2003;64:S92–S98.
  • Kalantar-Zadeh K, Ficociello L, Bazzanella J, et al. Slipping through the pores: hypoalbuminemia and albumin loss during hemodialysis.. Int J Nephrol Renovasc Dis. 2021;14:11–21.
  • Cuvelier C, Tintillier M, Migali G, et al. Albumin losses during hemodiafiltration: all dialyzers are not created equal – a case report. BMC Nephrol. 2019;20:392.
  • Mikelic A, Jäger W. On the effective equations of a viscous incompressible fluid flow through a filter of finite thickness. Commun Pure Appl Math. 1998;51:1073–1121.
  • Eloot S, De Wachter D, van Trich I, et al. Computational flow in hollow-fiber dialyzers. Artif Organs. 2002;26:590–599.
  • Rajagopal K, Tao L. Mechanics of mixtures. Singapore: World Scientific; 1995.
  • Charm S, Kurland G. Blood flow and microcirculation. New York: John Wiley; 1974.
  • Haynes R. Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol. 1960;198:1193–1200.
  • Farina A, Rosso F, Fasano A. A continuum mechanics model for the Fåhræus–Lindqvist effect. J Biol Phys. 2021;47:253–270.
  • Fasano A, Guarnieri G, Farina A. A mathematical model for the evolution of solute concentrations in a hemodialysis filter. Int J Biomath. 2018;11:1850015.
  • Landis EM, Pappenheimer JR. Handbook of Physiology. Circulation, ch. Exchange of substances through the capillary walls. Washington (DC): Am. Physiol. Soc; 1963.
  • Borsi I, Farina A, Fasano A. The effect of osmotic pressure on the flow of solutions through semi-permeable hollow fibers. Appl Math Model. 2013;37:5814–5827.
  • Hron J, Neuss-Radu M, Pustejovska P. Mathematical modelling and simulation of flow in domains separated by leaky semipermeable mebrane including osmothic effect. Appl Math. 2011;56:51–68.
  • Kaysen GA, Schoenfeld PY. Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1984;25:107–114.
  • Krieter D, Canaud B. High permeability of dialysis membranes: what is the limit of albumin loss?. Nephrol Dial Transplant. 2003;18:651–654.
  • Yeun J, Kaysen G. Factors influencing serum albumin in dialysis patients. Am J Kidney Dis. 1998;32:S118–S125.
  • Tsuchida K, Minakuchi J. Albumin loss under the use of the high-performance membrane. Contrib Nephrol. 2011;173:76–83.
  • Tomisawa N, Yamashita A. Amount of adsorbed albumin loss by dialysis membranes with protein adsorption. J Artif Organs. 2009;12:194–199.
  • Suzuki Y, Kohori F, Sakai K. Computer–aided design of hollow fiber dialyzers. J Artif Organs. 2001;4:326–330.
  • Kim J, Cruz D, Garzotto F, et al. Effects of dialysate flow configurations in continuous renal replacement therapy on solute removal. Comput Model Blood Purif. 2013;35:106–111.
  • Fasano A, Farina A. Modeling high flux hollow fibers dialyzers. Discrete Conti Dyn Syst B. 2012;17:1903–1937.
  • Ursino M, Colì L, Brighenti C, et al. Prediction of solute kinetics, acid–base status, and blood volume changes during profiled hemodialysis. Ann Biomed Eng. 2000;28:204–216.
  • Ki M, Eun B. Research computational assessment of the effects of a pulsatile pump on toxin removal in blood purification. Biomed Eng. 2010;9:1–16.
  • Galach M, Werynski A. Mathematical modeling of renal replacement therapies. Biocybernet Biomed Eng. 2004;24:3–18.
  • Farina A, Fasano A, Rosso F. Mathematical models for some aspects of blood microcirculation. Symmetry. 2021;13:1020.
  • Winkler AM. Chapter 38 – albumin and related products. In: B. H. Shaz, C. D. Hillyer, and M. Reyes Gil, editors. Transfusion Medicine and Hemostasis (Third Edition); Elsevier; third edition ed., 2019. p. 229–233.
  • Kainthan KR, Janzen J, Kizhakkedathu NJ, et al. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute. Biomaterials. 2008;29:1693–1704.
  • Brecher ME, Owen HG, Bandarenko N. Alternatives to albumin: starch replacement for plasma exchange. J Clin Apher. 1997;12:146–153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.