Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 15
71
Views
0
CrossRef citations to date
0
Altmetric
Articles

Large deviation principles for a 2D liquid crystal model with jump noise

Pages 4177-4208 | Received 17 Jan 2021, Accepted 04 Feb 2022, Published online: 18 Aug 2022

References

  • Ericksen JL. Hydrostatic theory of liquid crystals. Arch Rational Mech Anal. 1962;9:371–378.
  • Leslie FM. Some constitutive equations for liquid crystals. Arch Rational Mech Anal. 1968;28(4):265–283.
  • Gong H, Huang J, Liu L, et al. Global strong solutions of the 2D simplified Ericksen–Leslie system. Nonlinearity. 2015;28(10):3677–3694.
  • Wu H, Xu X, Liu C. Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties. Calc Var Partial Differ Equ. 2012;45(3–4):319–345.
  • Gong H, Li J, Xu C. Local well-posedness of strong solutions to density-dependent liquid crystal system. Nonlinear Anal. 2016;147:26–44.
  • Lin FH, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math. 1995;48(5):501–537.
  • Lin FH, Liu C. Existence of solutions for the Ericksen–Leslie system. Arch Ration Mech Anal. 2000;154(2):135–156.
  • Sun H, Liu C. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete Contin Dyn Syst. 2009;23(1–2):455–475.
  • Hong MC. Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc Var Partial Differ Equ. 2011;40(1-2):15–36.
  • Li J, Titi ES, Xin Z. On the uniqueness of weak solutions to the Ericksen–Leslie liquid crystal model in R2. Math Models Methods Appl Sci. 2016;26(4):803–822.
  • Lin F, Wang C. On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin Ann Math Ser B. 2010;31(6):921–938.
  • Lin FH, Liu JY, Wang CY. Liquid crystal flows in two dimensions. Arch Ration Mech Anal. 2010;197(1):297–336.
  • Lin F, Wang C. Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Comm Pure Appl Math. 2016;69(8):1532–1571.
  • Wang M, Wang W. Global existence of weak solution for the 2-D Ericksen–Leslie system. Calc Var Partial Differ Equ. 2014;51(3–4):915–962.
  • Feireisl E, Rocca E, Schimperna G. On a non-isothermal model for nematic liquid crystals. Nonlinearity. 2011;24(1):243–257.
  • Brzeźniak Z, Hausenblas E, Zhu J. 2D stochastic Navier–Stokes equations driven by jump noise. Nonlinear Anal. 2013;79:122–139.
  • Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise. Nonlinear Anal Real World Appl. 2014;17:283–310.
  • Brzeźniak Z, Manna U, Panda AA. Existence of weak martingale solution of nematic liquid crystals driven by pure jump noise. Preprint 2017. Available from: arXiv:1706.05056.
  • San Miguel M. Nematic liquid crystals in a stochastic magnetic field: spatial correlations. Phys Rev A. 1985;32(6):3811–3813.
  • Sagués F, San Miguel M. Dynamics of Fréedericksz transition in a fluctuating magnetic field. Phys Rev A. 1985;32(3):1843–1851.
  • Horsthemke W, Lefever R. Noise-induced transitions. Theory and applications in physics, chemistry and biology. Berlin: Springer-Verlag; 1984. (Springer Series in Synergetics; 15).
  • Hausenblas E, Razafimandimby PA, Sango M. Martingale solution to equations for differential type fluids of grade two driven by random force of Lévy type. Potential Anal. 2013;38(4):1291–1331.
  • Chueshov I, Millet A. Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl Math Optim. 2010;61:379–420.
  • Zhai J, Zhang T. Large deviations for 2D stochastic Navier–Stokes equations driven by multiplicative Lévy noises. Bernoulli. 2015;21(4):2351–239.
  • Liu W. Large deviations for stochastic evolution equations with small multiplicative noise. Appl Math Optim. 2010;61(1):27–56.
  • Sowers R. Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations. Probab Theory Related Fields. 1992;92(3):393–421.
  • Budhiraja A, Dupuis P. A variational representation for positive functionals of infinite dimensional brownian motion. Probab Math Statist. 2000;20(1):39–61.
  • Budhiraja A, Dupuis P, Maroulas V. Large deviations for infinite dimensional stochastic dynamical systems. Ann Probab. 2008;36(4):1390–1420.
  • Budhiraja A, Dupuis P, Maroulas V. Variational representations for continuous time processes. Ann Inst Henri Poincar Probab Stat. 2011;47(3):725–747.
  • Budhiraja A, Chen J, Dupuis P. Large deviations for stochastic partial differential equations driven by a poisson random measure. Stochastic Process Appl. 2013;123(2):523–560.
  • Rockner M, Zhang T. Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles. Potential Anal. 2007;26(3):255–279.
  • Świech A, Zabczyk J. Large deviations for stochastic PDE with Lévy noise`. J Funct Anal. 2011;260:674–723.
  • Zhang R, Zhou G. Large deviations for nematic liquid crystals driven by pure jump noise. Available from: arXiv:1801.09565.
  • Brzeźniak Z, Hausenblas E, Razafimandimby PA. Some results on the penalised nematic liquid crystals driven by multiplicative noise. Stoch Partial Differ Equ Anal Comput. 2019;7(3):417–475.
  • Fan J, Jiang F. Large-time behavior of liquid crystal flows with a trigonometric condition in two dimensions. Commun Pure Appl Anal. 2016;15(1):73–90.
  • Gal C, Grasselli M. Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann Inst H Poincaré Anal Non Linéaire. 2010;27(1):401–436.
  • Tachim Medjo T. On a stochastic 2D simplified liquid crystal model driven by jump noise. Commun Stoch Anal. 2018;12:3.
  • Ikeda N, Watanabe S. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Publishing Co; 1989.
  • Yang X, Zhai J, Zhang T. Large deviations for SPDEs of jump type. Stoch Dyn. 2015;15(4):1550026. 30 pp.
  • Flandoli F, Gatarek D. Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab Theory Related Fields. 1995;12(3):307–391.
  • Breckner (Lisei) H. Approximation and optimal control of the stochastic Navier–Stokes equations [Dissertation]. Halle-Wittenberg: Martin-Luther University; 1999.
  • Jakubowski A. On the skorokhod topology. Ann Inst H Poincar Probab Statist. 1986;22(3):263–285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.