Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 17
83
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Wave-breaking phenomena and persistence properties for a nonlinear dissipative Camassa–Holm equation

&
Pages 4805-4827 | Received 09 Jul 2022, Accepted 09 Oct 2022, Published online: 01 Nov 2022

References

  • J L. Stability of periodic peakons. Int Math Res Not. 2004;2004(10):485–499.
  • G N. Nonlinear longitudinal dispersive waves in elastic rods. J Math Phys Sci. 1970;4:64–73.
  • Fuchssteiner B, Fokas AS. Symplectic structures, their bäcklund transformations and hereditary symmetries. Phys D Nonlinear Phenom. 1981;4(1):47–66.
  • Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys D Nonlinear Phenom. 1996;95(3–4):229–243.
  • Camassa R, Holm DD. An integrable shallow water equation with peaked solitons. Phys Rev Lett. 1993;71(11):1661–1664.
  • Constantin A, Lannes D. The hydrodynamical relevance of the Camassa–Holm and Degasperis-Procesi equations. Arch Ration Mech Anal. 2009;192(1):165–186.
  • Ionescu Kruse D. Variational derivation of the Camassa–Holm shallow water equation. J Nonlinear Math Phys. 2007;14(3):311–320.
  • Johnson RS. Camassa–Holm, Korteweg–de Vries and related models for water waves. J Fluid Mech. 2002;455:63–82.
  • Johnson R. The Camassa–Holm equation for water waves moving over a shear flow. Fluid Dyn Res. 2003;33(1–2):97–111.
  • de Monvel A.B., Kostenko A., Shepelsky D., et al. Long-time asymptotics for the Camassa–Holm equation. SIAM J Math Anal. 2009;41(4):1559–1588.
  • Constantin A. On the scattering problem for the Camassa–Holm equation. Proc Math Phys Eng Sci. 2001;457(2008):953–970.
  • Constantin A, Gerdjikov VS, Ivanov RI. Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 2006;22(6):2197–2207.
  • Constantin A, McKean HP. A shallow water equation on the circle. Commun Pure Appl Math. 1999;52(8):949–982.
  • Beals R, Sattinger DH, Szmigielski J. Multi-peakons and a theorem of stieltjes. Inverse Probl. 1999;15(1):L1–L4.
  • Lenells J. Traveling wave solutions of the Camassa–Holm equation. J Differ Equ. 2005;217(2):393–430.
  • Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998; 181(2):229–243.
  • Kenig CE, Ponce G, Vega L. Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun Pure Appl Math. 1993;46(4):527–620.
  • Tao T. Low-regularity global solutions to nonlinear dispersive equations. In: Special program on spectral and scattering theory: surveys in analysis and operator theory; Vol. 40. Berlin: Australian National University; 2002. p. 19–48.
  • Constantin A. The trajectories of particles in stokes waves. Invent Math. 2006;166(3):523–535.
  • Constantin A, Mckean HP. A shallow water equation on the circle. Commun Pure Appl Math. 1999;52(8):949–982.
  • Toland JF. Stokes waves. Topol Methods Nonlinear Anal. 1996;7(1):1–48.
  • Constantin A, Strauss WA. Stability of peakons. Commun Pure Appl Math. 2000;53(5):603–610.
  • Constantin A, Strauss WA. Stability of the Camassa–Holm solitons. J Nonlinear Sci. 2002;12(4):415–422.
  • Beals R, Sattinger D, Szmigielski J. Acoustic scattering and the extended Korteweg devries hierarchy. Adv Math (N Y). 1998;140(2):190–206.
  • Constantin A, Molinet L. Global weak solutions for a shallow water equation. Commun Math Phys. 2000;211(1):45–61.
  • Lakshmanan M. Integrable nonlinear wave equations and possible connections to tsunami dynamics. In: Kundu A, editor. Tsunami nonlinear waves. Berlin: Springer; 2007. p. 31–49.
  • Constantin A, Johnson R. Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dyn Res. 2008;40(3):175.
  • Segur H. Waves in shallow water, with emphasis on the tsunami of 2004. In: Tsunami and nonlinear waves. Berlin: Springer; 2007. p. 3–29.
  • Constantin A. On the cauchy problem for the periodic Camassa–Holm equation. J Differ Equ. 1997;141(2):218–235.
  • Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann Inst Fourier. 2000;50:321–362.
  • Constantin A. On the blow-up of solutions of a periodic shallow water equation. J Nonlinear Sci. 2000;10(3):391–399.
  • Constantin A, Escher J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun Pure Appl Math: A Journal Issued by the Courant Inst Math Sci. 1998;51(5):475–504.
  • McKean H. Breakdown of a shallow water equation. Asian J Math. 1998;2(4):867–874.
  • Whitham GB. Linear and nonlinear waves. New York: John Wiley & Sons; 1980.
  • Constantin A, Escher J. On the cauchy problem for a family of quasilinear hyperbolic equations. Commun Partial Differ Equ. 1998;23(7–8):1449–1458.
  • Lai S, Wu Y. Global solutions and blow-up phenomena to a shallow water equation. J Differ Equ. 2010;249(3):693–706.
  • Li YA, Olver PJ. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Differ Equ. 2000;162(1):27–63.
  • Bressan A, Constantin A. Global conservative solutions of the Camassa–Holm equation. Arch Ration Mech Anal. 2007;183(2):215–239.
  • Constantin A, Escher J. Global weak solutions for a shallow water equation. Indiana Univ Math J. 1998; 47(4):1527–1545.
  • Wahlén E. Global existence of weak solutions to the Camassa–Holm equation. Int Math Res Not. 2006;2006:1–12.
  • Xin Z, Zhang P. On the weak solutions to a shallow water equation. Commun Pure Appl Math: A Journal Issued by the Courant Inst Math Sci. 2000;53(11):1411–1433.
  • Xin Z, Zhang P. On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Commun Partial Differ Equ. 2002;27(9–10):1815–1844.
  • Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Ann Sc Norm Super Pisa Cl Sci. 1998;26(2):303–328.
  • Freire IL, Sales Filho N, de Souza LC, et al. Invariants and wave breaking analysis of a Camassa–Holm type equation with quadratic and cubic non-linearities. J Differ Equ. 2020;269(8):56–77.
  • Lai S, Wu Y. Local well-posedness and weak solutions for a weakly dissipative Camassa–Holm equation. Sci Sin Math. 2010;40(9):901–920.
  • Wu S, Yin Z. Global existence and blow-up phenomena for the weakly dissipative Camassa–Holm equation. J Differ Equ. 2009;246(11):4309–4321.
  • Lai S, Wu Y. The local well-posedness and existence of weak solutions for a generalized Camassa–Holm equation. J Differ Equ. 2010;248(8):2038–2063.
  • Zhou S. Persistence properties for a generalized Camassa–Holm equation in weighted lp spaces. J Math Anal Appl. 2014;410(2):932–938.
  • Zhao Y, Li Y, Yan W. The global weak solutions to the Cauchy problem of the generalized Novikov equation. Appl Anal. 2014;94(7):1334–1354.
  • Tian C, Yan W, Zhang H. The Cauchy problem for the generalized hyperelastic rod wave equation. Math Nachr. 2014;287(17–18):2116–2137.
  • Ming S, Lai S, Su Y. The cauchy problem of a weakly dissipative shallow water equation. Appl Anal. 2019;98(8):1387–1402.
  • Brandolese L. Breakdown for the Camassa–Holm equation using decay criteria and persistence in weighted spaces. Int Math Res Not. 2012;2012(22):5161–5181.
  • Aldroub A, Grocheni K. Nonuniform sampling and reconstruction in shift-invariant spaces. Soc Ind Appl Math. 2001;43(4):585–620.
  • Kato T, Ponce G. Commutator estimates and the Euler and Navier–Stokes equations. Commun Pure Appl Math. 1988;41(7):891–907.
  • Chemin JY. Localization in Fourier space and Navier–Stokes system. Phase Space Anal Partial Differ Equ. 2004;1:53–136.
  • Himonas AA, Holliman C. The Cauchy problem for the Novikov equation. Nonlinearity. 2012;25(2):449–479.
  • Aldroubi A, Grochenig K. Nonuniform sampling and reconstruction in shift-invariant spaces. Soc Ind Appl Math. 2001;43(4):585–620.
  • Himonas AA, Misiołek G, Ponce G, et al. Persistence properties and unique continuation of solutions of the Camassa–Holm equation. Commun Math Phys. 2007;271(2):511–522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.