Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 18
128
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Qualitative behavior of solutions for a chemotaxis-haptotaxis system with gradient-dependent flux-limitation

&
Pages 5045-5061 | Received 11 Jan 2022, Accepted 04 Dec 2022, Published online: 18 Dec 2022

References

  • Keller EF, Segel LA. Initiation of slime mold aggregation viewed as an instability. J Theor Biol. 1970;26(3):399–415.
  • Hillen T, Painter KJ. A use's guide to PDE models for chemotaxis. J Math Biol. 2009;58(1-2):183–217.
  • Horstmann D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber Dtsch Math Ver. 2003;105:103–165.
  • Bellomo N, Bellouquid A, Tao Y, et al. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci. 2015;25(09):1663–1763.
  • Burczak J, Granero-Belinchón R. Suppression of blow up by a logistic source in 2D Keller-Segel system with fractional dissipation. J Differ Equ. 2017;263(9):6115–6142.
  • Bendahmane M, Burger R, Ruiz-Baier R, et al. On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding. Math Methods Appl Sci. 2009;32(13):1704–1737.
  • Bianchi A, Painter KJ, Sherratt JA. A mathematical model for lymphangiogenesisin normal and diabetic wounds. J Theor Biol. 2015;383:61–86.
  • Bellomo N, Bellouquid A, Nieto J, et al. Multiscale biological tissue models and flux-limited chemotaxis from binary mixtures of multicellular growing systems. Math Models Methods Appl Sci. 2010;20:1675–1693.
  • Bellomo N, Winkler M. Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Trans Amer Math Soc. 2017;4(2):31–67.
  • Winkler M. Conditional estimates in three-dimensional chemotaxis-Stokes systems and application to a Keller-Segel-fluid model accounting for gradient-dependent flux limitation. J Differ Equ. 2021;281:33–57.
  • Negreanu M, Tello JI. On a parabolic-elliptic system with gradient dependent chemotactic coefficient. J Differ Equ. 2018;265(3):733–751.
  • Tello JI. Blow up of solutions for a parabolic-elliptic chemotaxis system with gradient dependent chemotactic coefficient. Commun Part Differ Equ. 2022;47(2):307–345. doi: 10.1080/03605302.2021.1975132.
  • Winkler M. A critical blow-up exponent for flux limitation in a Keller-Segel system. Indiana Univ. Math. J. 2022;71(4):1437–1465.
  • Wang H, Li Y. On a parabolic-parabolic system with gradient dependent chemotactic coefficient and consumption. J Math Phys. 2019;60:1–20.
  • Winkler M. Suppressing blow-up by gradient-dependent flux limitation in a planar Keller-Segel-Navier-Stokes system. Z Angew Math Phys. 2021;72(2):1–24.
  • Yan J, Li Y. Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity. Electron J Differ Equ. 2020;122:1–14.
  • Bellomo N, Winkler M. A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun Partial Differ Equ. 2017;42(3):436–473.
  • Mizukami M, Ono T, Yokota T. Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system. J Differ Equ. 2019;267(9):5115–5164.
  • Tu X, Mu. P. Zheng C. On effects of the nonlinear signal production to the boundedness and finite-time blow-up in a flux-limited chemotaxis model. Math Models Methods Appl Sci. 2022;32(04):647–711.
  • Tello JI. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete Contin Dyn Syst Ser S. 2022;15(10):3003–3023.
  • Marrasa M, Vernier-Piro S, Yokota T. Blow-up phenomena for a chemotaxis system with flux limitation. J Math Anal Appl. 2022;515(1):126376.
  • Chaplain MAJ, Lolas G. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw Heterog Media. 2006;1(3):399–439.
  • Chaplain MAJ, Lolas G. Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci. 2005;15(11):1685–1734.
  • Besser D, Verde P, Nagamine Y, et al. Signal transduction and u-PA/u-PAR system. Fibrinolysis. 1996;10(4):215–237.
  • Aznavoorian S, Stracke ML, Krutzsch H, et al. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J Cell Biol. 1990;110(4):1427–1438.
  • Tao Y, Winkler M. Dominance of chemotaxis in a chemotaxis-haptotaxis model. Nonlinearity. 2014;27(6):1225–1239.
  • Tao Y, Winkler M. Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model. Proc Roy Soc Edinb A. 2014;144(5):1067–1084.
  • Zheng J, Wang Y. Boundedness of solutions to a quasilinear chemotaxis-haptotaxis model. Comput Math Appl. 2016;71(9):1898–1909.
  • Tao Y, Wang M. A combined chemotaxis-haptotaxis system: the role of logistic source. SIAM J Math Anal. 2009;41(4):1533–1558.
  • Tao Y, Winkler M. A chemotaxis-haptotaxis system with haptoattractant remodeling: boundedness enforced by mild saturation of signal production. Commun Pure Appl Anal. 2019;18(4):2047–2067.
  • Litcanu G, Morales-Rodrigo C. Asymptotic behavior of global solutions to a model of cell invasion. Math Models Methods Appl Sci. 2010;20(09):1721–1758.
  • Tao Y, Winkler M. Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion. SIAM J Math Anal. 2015;47(6):4229–4250.
  • Wang H, Zheng P, Xing J. Boundedness in a chemotaxis-haptotaxis model with gradient-dependent flux limitation. Appl Math Lett. 2021;122:107505.
  • Horstmann D, Winkler M. Boundedness vs. blow-up in a chemotaxis system. J Differ Equ. 2005;215(1):52–107.
  • Winkler M, Djie KC. Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal TMA. 2010;72(2):1044–1064.
  • Nagai T. Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J Inequal Appl. 2001;6:37–55.
  • Tao Y, Winkler M. A critical virus production rate for blow-up suppression in a haptotaxis model for oncolytic virotherapy. Nonlinear Anal. 2020;198:111870.
  • Tao Y. Global existence for a haptotaxis model of cancer invasion with tissue remodeling. Nonlinear Anal RWA. 2011;12(1):418–435.
  • Walker C, Webb GF. Global existence of classical solutions for a haptotaxis model. SIAM J Math Anal. 2007;38(5):1694–1713.
  • Zhigun A, Surulescu C, Uatay A. Global existence for a degenerate haptotaxis model of cancer invasion. Z Angew Math Phys. 2016;67(6):1–29.
  • Tao Y, Winkler M. Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy. Proc Roy Soc Edinb. 2022;152(1):81–101.
  • Gerischa A, Chaplain MAJ. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol. 2008;250(4):684–704.
  • Szymańska Z, Rodrigo CM, Lachowicz M. Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math Models Methods Appl Sci. 2009;19(02):257–281.
  • Chabrowski J. On the Neumann problem with L1 data. Colloq Math. 2007;107(2):301–316.
  • Li Y, Lankeit J. Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity. 2016;29(5):1564–1595.
  • Winkler M. Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model. J Differ Equ. 2010;248(12):2889–2905.
  • Gilbarg D, Trudinger NS. Elliptic partial differential equations of second order. Berlin: Springer; 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.