Publication Cover
Applicable Analysis
An International Journal
Volume 102, 2023 - Issue 18
198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A homogenization approach to the effect of surfactant concentration and interfacial slip on the flow past viscous drops

&
Pages 5170-5194 | Received 31 May 2022, Accepted 02 Jan 2023, Published online: 25 Jan 2023

References

  • Meier SA, Peter MA, Muntean A, et al. Dynamics of the internal reaction layer arising during carbonation of concrete. Chem Eng Sci. 2007;62(4):1125–1137.
  • Muntean A, Böhm M. Interface conditions for fast-reaction fronts in wet porous mineral materials: the case of concrete carbonation. J Eng Math. 2009;65:89–100.
  • Muntean A, Böhm M. A moving boundary problem for concrete carbonation: global existence and uniqueness of weak solutions. J Math Anal Appl. 2009;350(1):234–251.
  • Peter MA, Böhm M. Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium. Math Methods Appl Sci. 2008;31:1257–1282.
  • Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab Chip. 2010;10:2032–2045.
  • Carlo D, Irimia D, Tompkins RG, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA. 2007;104(48):18892–18897.
  • Leal LG. Particle motions in a viscous fluid. Annu Rev Fluid Mech. 1980;12(1):435–476.
  • Subramanian RS, Balasubramanian R. The motion of bubbles and drops in reduced gravity. Cambridge: Cambridge University Press; 2001.
  • Young N, Goldstein JS, Block MJ. The motion of bubbles in a vertical temperature gradient. J Fluid Mech. 1959;6(3):350–356.
  • Subramanian RS. Thermocapillary migration of bubbles and droplets. Adv Space Res. 1983;3(5):145–153.
  • Chisnell RF. The unsteady motion of a drop moving vertically under gravity. J Fluid Mech. 1987;176:443–464.
  • Choudhuri D, Raja Sekhar GP. Thermocapillary drift on a spherical drop in a viscous fluid. Phys Fluids. 2013;25(4):043104.
  • Ramachandran A, Tsigklifis K, Roy A, et al. The effect of interfacial slip on the dynamics of a drop in flow: part I. Stretching, relaxation, and breakup. J Rheol. 2011;56(1):45–97.
  • Ramachandran A, Leal LG. The effect of interfacial slip on the rheology of a dilute emulsion of drops for small capillary numbers. J Rheol. 2012;56(6):1555–1587.
  • Mandal S, Bandopadhyay A, Chakraborty S. The effect of interfacial slip on the motion and deformation of a droplet in an unbounded arbitrary stokes flow. arXiv preprint arXiv:1503.08388. 2015.
  • Fatima T, Muntean A. Sulfate attack in sewer pipes: derivation of a concrete corrosion model via two-scale convergence. Nonlinear Anal Real World Appl. 2014;15:326–344.
  • Peter MA. Modelling and homogenization of reaction interfacial exchange in porous media [Diploma Thesis]. Germany: University of Bremen; 2003.
  • Peter MA. Mathematical modelling and homogenization of coupled reaction–diffusion systems taking into account an evolution of the microstructure [Doctoral Thesis]. Germany: University of Bremen; 2006.
  • Peter MA, Böhm M. Multi-scale modelling of chemical degradation mechanisms in porous media with evolving microstructure. Multiscale Model Simul. 2009;7(4):1643–1668.
  • LeVan MD, Newman J. The effect of surfactant on the terminal and interfacial velocities of a bubble or drop. AIChE J. 1976;22(4):695–701.
  • Neuss-Radu M. Homogenization techniques [Diploma Thesis]. Germany: University of Heidelberg; 1992.
  • Neuss-Radu M, Jäger W. Effective transmission conditions for reaction-diffusion processes in domains seperated by interface. SIAM J Math Anal. 2007;39(3):687–720.
  • Holbrook JA, LeVan MD. Retardation of droplet motion by surfactant. Part 1. Theoretical development and asymptotic solutions. Chem Eng Commun. 1983;20(3-4):191–207.
  • Holbrook JA, LeVan MD. Retardation of droplet motion by surfactant. Part 2. Numerical solutions for exterior diffusion, surface diffusion, and adsorption kinetics. Chem Eng Commun. 1983;20(5-6):273–290.
  • Sadhal SS, Johnson RE. Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film-exact solution. J Fluid Mech. 1983;126:237–250.
  • Alke A, Bothe D. Vof-simulation of fluid particles influenced by soluble surfactant. In 6th International Conference on Multiphase Flow. ICMF2007; Leipzig: 2007.
  • Oguz HN, Johnson RE. Effects of soluble and insoluble surfactants on the motion of drops. J Fluid Mech. 1988;194:563–579.
  • Pak OS, Feng J, Stone HA. Viscous Marangoni migration of a drop in a poiseuille flow at low surface Péclet numbers. J Fluid Mech. 2014;753:535–552.
  • Sharanya V, Raja Sekhar GP. Thermocapillary migration of a spherical drop in an arbitrary transient stokes flow. Phys Fluids. 2015;27(063104):1–21.
  • Sharanya V, Raja Sekhar GP, Rohde C. The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int J Multiph Flow. 2018;107:82–103.
  • van Duijn CJ, Pop IS. Crystals dissolution and precipitation in porous media: pore scale analysis. J Für Die Reine Und Angew Math. 2004;577:171–211.
  • Evans LC. Partial differential equations. Providence, RI: AMS Publications; 1998.
  • Lunardi A. Analytic semigroups and optimal regularity in parabolic problems. Basel: Birkhäuser Publication; 1995.
  • Roubíček T. Nonlinear partial differential equations with applications. Basel-Boston-Berlin; Birkhäuser Publications; 2005.
  • Showalter RE. Monotone operators in Banach space and nonlinear partial differential equations. Providence, RI: American Mathematical Society; 1997.
  • Suslina T. Sobolev space. Lecture notes, University of Stuttgart; 2004.
  • Mahato HS, Böhm M. Homogenization of a system of semilinear diffusion-reaction equations in an h1,p setting. Electron J Differ Equ. 2013;210:1–22.
  • Allaire G, Damlamian A, Hornung U. Two-scale convergence on periodic structures and applications. Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media; Singapore: World Scientific Publication; 1996. pp. 15–25.
  • Neuss-Radu M. Some extension of two-scale convergence. C R Acad Sci Paris. 1996;322:899–904.
  • Lukkassen D, Nguetseng G, Wall P. Two scale convergence. Int J Pure Appl Math. 2002;2(1):35–86.
  • Allaire G. Homogenization and two scale convergence. SIAM J Math Anal. 1992;23(6):1482–1518.
  • Allaire G. Two-scale convergence and homogenization of periodic structures. School of Homogenisation. Trieste: ICTP; 1993.
  • Nguetseng G. A general convergence result for a functional related to the theory of homogenization. SIAM J Math Anal. 1989;20(3):608–623.
  • Arbogast T, Douglas J, Hornung U. Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J Math Anal. 1990;21:823–836.
  • Bourgeat A, Luckhaus S, Mikelic A. Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. SIAM J Math Anal. 1996;27:1520–1543.
  • Derivation of a macroscopic receptor-based model using homogenization techniques. SIAM J Math Anal. 2008;40(1):215–237.
  • Cioranescu D, Damlamian A, Griso G. Periodic unfolding and homogenization. C R Acad Sci. 2002;335:99–104.
  • Cioranescu D, Damlamian A, Griso G. The periodic unfolding method in homogenization. SIAM J Math Anal. 2008;40(4):1585–1620.
  • Cioranescu D, Donato P, Zaki R. The periodic unfolding method in perforated domains. Portugaliæ Math. 2006;63(4):1–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.