Publication Cover
Applicable Analysis
An International Journal
Volume 103, 2024 - Issue 1
665
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The existence and dimension of the attractor for a 3D flow of a non-Newtonian fluid subject to dynamic boundary conditions

&
Pages 166-183 | Received 20 Sep 2022, Accepted 05 Feb 2023, Published online: 16 Feb 2023

References

  • Chepyzhov VV, Vishik MI. Attractors for equations of mathematical physics. Providence (RI): American Mathematical Society; 2002. (American mathematical society colloquium publications; vol. 49).
  • Chueshov I, Lasiecka I, Webster JT. Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping. Commun Partial Differ Equ. 2014;39(11):1965–1997.
  • Chueshov I, Lasiecka I. Von Karman evolution equations. New York (NY): Springer; 2010.
  • Robinson JC. Dimensions, embeddings, and attractors. Cambridge: Cambridge University Press; 2011. (Cambridge tracts in mathematics; vol. 186).
  • Temam R. Infinite-dimensional dynamical systems in mechanics and physics. 2nd ed. New York: Springer-Verlag; 1997. (Applied mathematical sciences; vol. 68).
  • Ilyin A, Patni K, Zelik S. Upper bounds for the attractor dimension of damped Navier-Stokes equations in R2. Discrete Contin Dyn Syst. 2016;36(4):2085–2102.
  • Ilyin A, Kostianko A, Zelik S. Sharp upper and lower bounds of the attractor dimension for 3D damped Euler-Bardina equations. Phys D. 2022;432.Paper No. 133156, 13.
  • Ladyzhenskaya OA. New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr Mat Inst Steklova. 1967;102:85–104.
  • Málek J, Rajagopal KR. Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. In: Evolutionary equations. Vol. II, Handb. Differ. Equ. Amsterdam: Elsevier/North-Holland; 2005. p. 371–459.
  • Abbatiello A, Bulíček M, Maringová E. On the dynamic slip boundary condition for Navier-Stokes-like problems. Math Models Methods Appl Sci. 2021;31(11):2165–2212.
  • Maringová E. Mathematical analysis of models arising in continuum mechanics with implicitly given rheology and boundary conditions [PhD thesis]. Faculty of Mathematics and Physics, Charles University; 2019.
  • Pražák D, Zelina M. On the uniqueness of the solution and finite-dimensional attractors for the 3D flow with dynamic boundary condition. Submitted.
  • Bulíček M, Ettwein F, Kaplický P, et al. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Commun Pure Appl Anal. 2009;8(5):1503–1520.
  • Kaplický P, Pražák D. Lyapunov exponents and the dimension of the attractor for 2D shear-thinning incompressible flow. Discrete Contin Dyn Syst. 2008;20(4):961–974.
  • Pražák D, Žabenský J. On the dimension of the attractor for a perturbed 3D Ladyzhenskaya model. Cent Eur J Math. 2013;11(7):1264–1282.
  • Málek J, Pražák D. Large time behavior via the method of l-trajectories. J Differ Equ. 2002;181(2):243–279.
  • Bulíček M, Málek J, Pražák D. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Commun Pure Appl Anal. 2005;4(4):805–822.
  • Pražák D, Zelina M. On linearization principle for Navier-Stokes system with dynamic slip boundary condition. Accepted to CPAA (Comm. Pure Appl. Anal.).
  • Bensoussan A, Da Prato G, Delfour MC, et al. Representation and control of infinite dimensional systems. 2nd ed. Boston (MA): Birkhäuser Boston, Inc.; 2007. (Systems & Control: Foundations & Applications).
  • Triebel H. Interpolation theory, function spaces, differential operators. Amsterdam (NY): North-Holland Pub. Co; 1978.
  • Lasiecka I, Triggiani R. Domains of fractional powers of matrix-valued operators: a general approach. Oper Theory Adv Appl. 2015;250:297–309.
  • Boyer F, Fabrie P. Mathematical tools for the study of the incompressible Navier-Stokes equations and related models. New York: Springer; 2013. (Applied mathematical sciences; vol. 183).
  • Bulíček M, Málek J, Rajagopal KR. Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ Math J. 2007;56(1):51–86.
  • Constantin C, Foias P. Navier-Stokes equations. Chicago: University of Chicago Press; 1988.