Publication Cover
Applicable Analysis
An International Journal
Volume 103, 2024 - Issue 4
1,749
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exact solutions for geophysical flows with discontinuous variable density and forcing terms in spherical coordinates

ORCID Icon, ORCID Icon & ORCID Icon
Pages 734-747 | Received 26 Jan 2023, Accepted 21 Feb 2023, Published online: 06 May 2023

References

  • Firing YL, Chereskin TK, Mazloff MR. Vertical structure and transport of the Antarctic circumpolar current in drake passage from direct velocity observations. J Geophys Res. 2011;116:C08015.
  • Ivchenko VO, Richards KJ. The dynamics of the Antarctic circumpolar current. J Phys Oceanogr. 1996;26:753–774.
  • Olbers D, Borowski D, Völker C, et al. The dynamical balance, transport and circulation of the Antarctic circumpolar current. Antarctic Sci. 2004;16:439–470.
  • Rintoul SR, Hughes C, Olbers D. The Antarctic circumpolar current system. In: Seidler G, Church J, Gould J, editors. Ocean circulation and climate: observing and modelling the global ocean. Vol. 77. San Diego, CA: Academic Press; 2001. p. 271–302, .
  • Constantin A, Johnson RS. An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current. J Phys Oceanogr. 2016;46:3585–3594.
  • Howard E, Hogg AM, Waterman S, et al. The injection of zonal momentum by buoyancy forcing in a Southern ocean model. J Phys Oceanogr. 2015;45:259–271.
  • Karsten R, Jones H, Marshall J. The role of eddy transfer in setting the stratification and transport of a circumpolar current. J Phys Oceanogr. 2002;32:39–54.
  • Karsten R, Marshall J. Testing theories of the vertical stratification of the ACC against observations. Dyn Atmos Oceans. 2002;36:233–246.
  • Constantin A, Johnson RS. The dynamics of waves interacting with the equatorial undercurrent. Geophys Astrophys Fluid Dyn. 2015;109:311–358.
  • Constantin A, Johnson RS. A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys Fluids. 2017;29:056604.
  • Fedorov AV, Brown JN. Equatorial waves. In: Steele J, editor. Encyclopedia of ocean sciences. New York: Academic Press; 2009. p. 3679–3695.
  • Kessler WS, McPhaden MJ. Oceanic equatorial waves and the 1991–93 el niño. J Climate. 1995;8:1757–1774.
  • McCreary JP. Modeling equatorial ocean circulation. Ann Rev Fluid Mech. 1985;17:359–409.
  • Phillips H, Legresy B, Bindoff N. Explainer: how the Antarctic circumpolar current helps keep Antarctica frozen, The Conversation, November 15, 2018.
  • Basu B. On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density. Discrete Contin Dyn Syst. 2019;39:4783–4796.
  • Chu J, Ding Q, Escher J. Variational formulation of rotational steady water waves in two-layer flows. J Math Fluid Mech. 2021;23(1):17.
  • Chu J, Wang L. Analyticity of rotational traveling gravity two-layer waves. Stud Appl Math. 2021;146:605–634.
  • Constantin A, Ivanov RI. A Hamiltonian approach to wave–current interactions in two-layer fluids. Phys Fluids. 2015;27:086603.
  • Constantin A, Ivanov RI. Equatorial wave–current interactions. Commun Math Phys. 2019;370:1–48.
  • Constantin A, Ivanov RI, Martin CI. Hamiltonian formulation for wave–current interactions in stratified rotational flows. Arch Ration Mech Anal. 2016;221:1417–1447.
  • Escher J, Matioc A-V, Matioc B-V. On stratified steady periodic water waves with linear density distribution and stagnation points. J Differ Equ. 2011;251:2932–2949.
  • Geyer A, Quirchmayr R. Shallow water models for stratified equatorial flows. Discrete Contin Dyn Syst. 2019;39:4533–4545.
  • Henry D, Matioc B-V. On the existence of steady periodic capillary-gravity stratified water waves. Ann Sc Norm Super Pisa Cl Sci (5). 2013;12:955–974.
  • Henry D, Matioc A-V. Global bifurcation of capillary-gravity-stratified water waves. Proc R Soc Edinburgh Sect A. 2014;144:775–786.
  • Walsh S. Stratified steady periodic water waves. SIAM J Math Anal. 2009;41:1054–1105.
  • Wheeler MH. On stratified water waves with critical layers and coriolis forces. Discrete Contin Dyn Syst. 2019;39:4747–4770.
  • Escher J, Knopf P, Lienstromberg C, et al. Stratified periodic water waves with singular density gradients. Ann Mat Pura Appl (4). 2020;199:1923–1959.
  • Constantin A, Johnson RS. An exact, steady, purely azimuthal equatorial flow with a free surface. J Phys Oceanogr. 2016;46:1935–1945.
  • Chu J, Escher J. Steady periodic equatorial water waves with vorticity. Discrete Contin Dyn Syst A. 2019;39(8):4713–4729.
  • Chu J, Ionescu-Kruse D, Yang Y. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete Contin Dyn Syst. 2019;39:4399–4414.
  • Constantin A. An exact solution for equatorially trapped waves. J Geophys Res Oceans. 2012;117:C05029.
  • Constantin A. Some three-dimensional nonlinear equatorial flows. J Phys Oceanogr. 2013;43:165–175.
  • Constantin A. Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J Phys Oceanogr. 2014;44:781–789.
  • Constantin A, Johnson RS. On the nonlinear, three-dimensional structure of equatorial oceanic flows. J Phys Oceanogr. 2019;49:2029–2042.
  • Henry D. An exact solution for equatorial geophysical water waves with an underlying current. Eur J Mech B Fluids. 2013;38:18–21.
  • Ionescu-Kruse D. A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows. J Differ Equ. 2018;264:4650–4668.
  • Martin CI. Constant vorticity water flows with full coriolis term. Nonlinearity. 2019;32:2327–2336.
  • Martin CI. Azimuthal equatorial flows in spherical coordinates with discontinuous stratification. Phys Fluids. 2021;33(2):026602.
  • Matioc A-V. Exact geophysical waves in stratified fluids. Appl Anal. 2013;92:2254–2261.
  • Matioc A-V, Matioc B-V. On periodic water waves with coriolis effects and isobaric streamlines. J Nonlinear Math Phys. 2012;19(Suppl. 1):1240009.
  • Henry D, Martin CI. Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J Differ Equ. 2019;266:6788–6808.
  • Henry D, Martin CI. Azimuthal equatorial flows with variable density in spherical coordinates. Arch Ration Mech Anal. 2019;233:497–512.
  • Henry D, Martin CI. Stratified equatorial flows in cylindrical coordinates. Nonlinearity. 2020;33:3889–3904.
  • Martin CI, Quirchmayr R. Explicit and exact solutions concerning the Antarctic circumpolar current with variable density in spherical coordinates. J Math Phys. 2019;60:101505.
  • Martin CI, Quirchmayr R. Exact solutions and internal waves for the Antarctic circumpolar current in spherical coordinates. Stud Appl Math. 2022;148:1021–1039.
  • Marynets K. The Antarctic circumpolar current as a shallow-water asymptotic solution of Euler's equation in spherical coordinates. Deep-Sea Res Part II: Top Stud Oceanogr. 2019;160:58–62.
  • Marynets K. Stuart-type vortices modeling the Antarctic circumpolar current. Monatsh Math. 2020;191(4):749–759.
  • Quirchmayr R. A steady, purely azimuthal flow model for the Antarctic Circumpolar Current. Monatsh Math. 2018;187:565–572.
  • Martin CI, Petruşel A. Free surface equatorial flows in spherical coordinates with discontinuous stratification depending on depth and latitude. Ann Mat Pura Appl (4). 2022;201:2677–2690.
  • Henry D, Villari G. Flow underlying coupled surface and internal waves. J Differ Equ. 2022;310:404–442.
  • Waterman S, NaveiraGarabato AC. Internal waves and turbulence in the Antarctic circumpolar current. J Phys Oceanogr. 2013;43:259–282.
  • Maslowe SA. Critical layers in shear flows. Ann Rev Fluid Mech. 1986;18:405–432.
  • Berger MS. Nonlinearity and functional analysis. New York: Academic Press; 1977.