Publication Cover
Applicable Analysis
An International Journal
Volume 103, 2024 - Issue 9
115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mean square stability of the split-step theta method for non-linear time-changed stochastic differential equations

, , &
Pages 1733-1750 | Received 05 Oct 2022, Accepted 28 Jun 2023, Published online: 25 Sep 2023

References

  • Chen ZQ. Time fractional equations and probabilistic representation. Chaos Solit Fractals. 2017;102:168–174. doi: 10.1016/j.chaos.2017.04.029
  • Liu W. Polynomial stability of highly non-linear time-changed stochastic differential equations. Appl Math Lett. 2021;119:107233. doi: 10.1016/j.aml.2021.107233
  • Magdziarz M. Stochastic representation of subdiffusion processes with time-dependent drift. Stoch Process Their Appl. 2009;119(10):3238–3252. doi: 10.1016/j.spa.2009.05.006
  • Nane E, Ni Y. Path stability of the solution of stochastic differential equation driven by time-changed Lévy noises. Proc Am Math Soc. 2017;145(7):3085–3104. doi: 10.1090/proc/2017-145-07
  • Umarov S, Hahn M, Kobayashi K. Beyond the triangle: Brownian motion, itô calculus, and Fokker-Planck equation-fractional generalizations. Singapore: World Scientific; 2018.
  • Allen E. Modeling with itô stochastic differential equations. Vol. 22. Dordrecht: Springer; 2007.
  • Grigoriu M. Stochastic calculus: applications in science and engineering. New York: Springer Science & Business Media; 2013.
  • Shreve SE. Stochastic calculus for finance ii: continuous-time models. Vol. 11. New York: Springer; 2004.
  • Steele JM. Stochastic calculus and financial applications. Vol. 1. New York: Springer; 2001.
  • Meerschaert MM, Scheffler HP. Limit theorems for continuous-time random walks with infinite mean waiting times. J Appl Probab. 2004;41(3):623–638. doi: 10.1239/jap/1091543414
  • Jum E, Kobayashi K. A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion. Probab Math Stat. 2016;36(2):201–220.
  • Zhang X, Zhu Z, Yuan C. Asymptotic stability of the time-changed stochastic delay differential equations with Markovian switching. Open Math. 2021;19(1):614–628. doi: 10.1515/math-2021-0054
  • Kobayashi K. Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. J Theor Probab. 2011;24(3):789–820. doi: 10.1007/s10959-010-0320-9
  • Deng CS, Liu W. Semi-implicit Euler–Maruyama method for non-linear time-changed stochastic differential equations. BIT Numer Math. 2020;60(4):1133–1151. doi: 10.1007/s10543-020-00810-7
  • Liu W, Mao X, Tang J, et al. Truncated Euler-Maruyama method for classical and time-changed non-autonomous stochastic differential equations. Appl Numer Math. 2020;153:66–81. doi: 10.1016/j.apnum.2020.02.007
  • Jin S, Kobayashi K. Strong approximation of stochastic differential equations driven by a time-changed Brownian motion with time-space-dependent coefficients. J Math Anal Appl. 2019;476(2):619–636. doi: 10.1016/j.jmaa.2019.04.001
  • Hutzenthaler M, Jentzen A, Kloeden PE. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc R Soc A Math Phys Eng Sci. 2011;467(2130):1563–1576.
  • Cao W, Liang J, Liu Y. On strong convergence of explicit numerical methods for stochastic delay differential equations under non-global Lipschitz conditions. J Comput Appl Math. 2021;382:113079. doi: 10.1016/j.cam.2020.113079
  • Hutzenthaler M, Jentzen A, Kloeden PE. Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann Appl Probab. 2012;22(4):1611–1641. doi: 10.1214/11-AAP803
  • Gan S, He Y, Wang X. Tamed Runge-Kutta methods for SDEs with super-linearly growing drift and diffusion coefficients. Appl Numer Math. 2020;152:379–402. doi: 10.1016/j.apnum.2019.11.014
  • Mao X. The truncated Euler–Maruyama method for stochastic differential equations. J Comput Appl Math. 2015;290:370–384. doi: 10.1016/j.cam.2015.06.002
  • Zhang W, Yin X, Song M, et al. Convergence rate of the truncated Milstein method of stochastic differential delay equations. Appl Math Comput. 2019;357:263–281. doi: 10.1016/j.cam.2019.02.032
  • Zong X, Wu F, Huang C. Convergence and stability of the semi-tamed Euler scheme for stochastic differential equations with non-Lipschitz continuous coefficients. Appl Math Comput. 2014;228:240–250.
  • Gao J, Liang H, Ma S. Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay. Appl Math Comput. 2019;348:385–398. doi: 10.1016/j.cam.2018.08.040
  • Hu Y. Semi-implicit Euler-Maruyama scheme for stiff stochastic equations. In: Korezlioglu H, Oksendal B, Ustunel AS, editors. Stochastic analysis and related topics v. (Silivri, 1994). Birkhäuser: Boston; 1996. p. 183–202. (Progress in probability).
  • Yan Z, Xiao A, Tang X. Strong convergence of the split-step theta method for neutral stochastic delay differential equations. Appl Numer Math. 2017;120:215–232. doi: 10.1016/j.apnum.2017.05.008
  • Ding X, Ma Q, Zhang L. Convergence and stability of the split-step θ-method for stochastic differential equations. Comput Math Appl. 2010;60(5):1310–1321.
  • Yue C, Huang C, Jiang F. Strong convergence of split-step theta methods for non-autonomous stochastic differential equations. Int J Comput Math. 2014;91(10):2260–2275. doi: 10.1080/00207160.2013.871541
  • Gajda J, Magdziarz M. Fractional Fokker-Planck equation with tempered α-stable waiting times: Langevin picture and computer simulation. Phys Rev E. 2010;82(1):011117. doi: 10.1103/PhysRevE.82.011117
  • Jin S, Kobayashi K. Strong approximation of time-changed stochastic differential equations involving drifts with random and non-random integrators. BIT Numer Math. 2021;61(3):829–857. doi: 10.1007/s10543-021-00852-5
  • Magdziarz M, Orzeł S, Weron A. Option pricing in subdiffusive Bachelier model. J Stat Phys. 2011;145:187–203. doi: 10.1007/s10955-011-0310-z
  • Higham DJ, Mao X, Stuart AM. Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J Numer Anal. 2002;40(3):1041–1063. doi: 10.1137/S0036142901389530
  • Mao X. Stochastic differential equations and applications. Chichester: Horwood; 1997.
  • Zong X, Wu F, Huang C. Exponential mean square stability of the theta approximations for neutral stochastic differential delay equations. J Comput Appl Math. 2015;286:172–185. doi: 10.1016/j.cam.2015.03.016
  • Zong X, Wu F, Huang C. Theta schemes for SDDEs with non-globally Lipschitz continuous coefficients. J Comput Appl Math. 2015;278:258–277. doi: 10.1016/j.cam.2014.10.014
  • Jacod J, Shiryaev A. Limit theorems for stochastic processes. Vol. 288. New York: Springer Science & Business Media; 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.