Publication Cover
Applicable Analysis
An International Journal
Volume 103, 2024 - Issue 11
129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Decay estimates of the 3D magneto-micropolar system with applications to L3-strong solutions

ORCID Icon &
Pages 1903-1921 | Received 16 Aug 2023, Accepted 11 Oct 2023, Published online: 18 Oct 2023

References

  • Dong H, Du D. Partial regularity of solutions to the four-dimensional Navier–Stokes equations at the first blow-up time. Comm Math Phys. 2007;273(3):785–801.
  • Lin F. A new proof of the Caffarelli–Kohn–Nirenberg theorem. Comm Pure Appl Math. 1998;51(3):241–257.
  • Vasseur A. Regularity criterion for 3D Navier–Stokes equations in terms of the direction of the velocity. Appl Math. 2009;54(1):47–52.
  • Wang Y, Ye Y. A general sufficient criterion for energy conservation in the Navier–Stokes system. Math Methods Appl Sci. 2023;46(8):9268–9285.
  • Chen Q. Optimal time decay rate of the highest derivative of solutions to the compressible Navier–Stokes equations. Acta Math Sci Ser A (Chinese Ed). 2021;41(2):345–356.
  • Chen Q, Wu G. Large-time behavior of the energy to the isentropic compressible Navier–Stokes equations with vacuum. Appl Math Lett. 2022;130:Article ID 107959, 7pp.
  • Chen Q, Wu G, Zhang Y. Optimal large time behavior of the compressible bipolar Navier–Stokes-Poisson system. Commun Math Sci. 2023;21(2):323–349.
  • Chen Q, Wu G, Zhang Y, et al. Optimal time decay rates for the compressible Navier–Stokes system with and without Yukawa-type potential. Electron J Differ Equ. 2020;102:1–25.
  • Shi W, Xu J. The large-time behavior of solutions in the critical Lp framework for compressible viscous and heat-conductive gas flows. J Math Phys. 2020;61(6):Article ID 061516, 27pp.
  • Chen Q, Tan Z. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinet Relat Models. 2012;5(4):743–767.
  • Du L, Zhou D. Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and magnetic diffusion. SIAM J Math Anal. 2015;47(2):1562–1589.
  • Gala S, Sawano Y, Tanaka H. On the uniqueness of weak solutions of the 3D MHD equations in the Orlicz-Morrey space. Appl Anal. 2013;92(4):776–783.
  • Ma C, Alsaedi A, Hayat T, et al. Global regularity for the 2D incompressible MHD-α system without full dissipation and magnetic diffusions. J Math Anal Appl. 2016;434(2):1035–1052.
  • Zhang R. Existence and uniqueness of invariant measures of 3D stochastic MHD-α model driven by degenerate noise. Appl Anal. 2022;101(2):629–654.
  • Agapito R, Schonbek M. Non-uniform decay of MHD equations with and without magnetic diffusion. Comm Partial Differ Equ. 2007;32(10-12):1791–1812.
  • Melo WG, Rosa Santos TS. Time decay rates for the generalized MHD-α equations in Sobolev-Gevrey spaces. Appl Anal. 2022;101(18):6623–6644.
  • Shang Z. Global existence and large time behavior of solutions for full compressible Hall-MHD equations. Appl Anal. 2020;99(11):1865–1888.
  • Wu G, Wang J, Zhang Y. Optimal large time behaviour of the 3D compressible magnetohydrodynamics equations with large initial data. Nonlinearity. 2022;35(11):5593–5620.
  • Zhang H. Global mild solutions and long time decay of 3D incompressible MHD equations. J Partial Differ Equ. 2018;31(4):343–352.
  • Eringen AC. Theory of micropolar fluids. J Math Mech. 1966;16:1–18.
  • Galdi GP, Rionero S. A note on the existence and uniqueness of solutions of the micropolar fluid equations. Internat J Engrg Sci. 1977;15(2):105–108.
  • Lange H. The existence of instationary flows in incompressible micropolar fluids. Arch Mech (Arch Mech Stos). 1977;29(5):741–744.
  • Sava VA. On the existence of solutions of the micropolar fluid equations. Rev Roumaine Math Pures Appl. 1980;25(7):1111–1123.
  • Chen Z, Price WG. Decay estimates of linearized micropolar fluid flows in R3 space with applications to L3-strong solutions. Internat J Engrg Sci. 2006;44(13-14):859–873.
  • Dong B, Chen Z. Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows. Discrete Contin Dyn Syst. 2009;23(3):765–784.
  • Dong B, Li J, Wu J. Global well-posedness and large-time decay for the 2D micropolar equations. J Differ Equ. 2017;262(6):3488–3523.
  • Guo Y, Jia Y, Dong B. Time decay rates of the micropolar equations with zero angular viscosity. Bull Malays Math Sci Soc. 2021;44(6):3663–3675.
  • Ye H, Wang Q, Jia Y. Well-posedness and large time decay for the 3D micropolar equations with only velocity dissipation. Nonlinear Anal. 2022;219:Article ID112796,25pp.
  • Lin X, Zhang T. Local well-posedness for 2D incompressible magneto-micropolar boundary layer system. Appl Anal. 2021;100(1):206–227.
  • Rojas-Medar MA, Boldrini JL. Magneto-micropolar fluid motion: existence of weak solutions. Rev Mat Complut. 1998;11(2):443–460.
  • Shang H, Zhao J. Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion. Nonlinear Anal. 2017;150:194–209.
  • Yamazaki K. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete Contin Dyn Syst. 2015;35(5):2193–2207.
  • Yuan B, Qiao Y. Global regularity for the 2D magneto-micropolar equations with partial and fractional dissipation. Comput Math Appl. 2018;76(10):2345–2359.
  • Ye X, Lin X. Asymptotic profiles of solutions to the two-dimensional incompressible magneto-micropolar equations; 2023. Preprint.
  • Ortega-Torres EE, Rojas-Medar MA. Magneto-micropolar fluid motion: global existence of strong solutions. Abstr Appl Anal. 1999;4(2):109–125.
  • Rojas-Medar MA. Magneto-micropolar fluid motion: existence and uniqueness of strong solution. Math Nachr. 1997;188(1):301–319.
  • Zhang P. Decay of the compressible magneto-micropolar fluids. J Math Phys. 2018;59(2):Article ID 023102, 11 pp.
  • Bai Y, Zhang T. The pointwise estimates of solutions for the 3D compressible viscoelastic fluids. J Differ Equ. 2023;356:336–374.
  • Xu J, Mori N, Kawashima S. Lp- Lq -Lr    estimates and minimal decay regularity for compressible Euler-Maxwell equations. J Math Pures Appl (9). 2015;104(5):965–981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.