208
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effect of wind on the convective heat transfer from the floor of single-sided naturally ventilated cubical enclosures

, &
Pages 417-424 | Received 05 May 2019, Accepted 16 Feb 2020, Published online: 02 Mar 2020

References

  • Alamdari, F., and G. P. Hammond. 1983. “Improved Data Correlations for Buoyancy-Driven Convection in Rooms.” Building Services Engineering Research and Technology 4 (3): 106–112. doi:10.1177/014362448300400304.
  • Anderson, T. N. 2013. “Natural Convection Heat Transfer from a Partly Open Enclosure.” Paper presented at the 8th Australian natural convection workshop (8ANCW), Sydney, December 16–17.
  • Anderson, T. N., and S. E. Norris. 2016. “Natural Convection Heat Loss from a Partly Open Cubic Enclosure.” Proceedings of the 10th Australasian Heat and Mass Transfer Conference (AHMT2016), Brisbane.
  • Awbi, H. B., and A. Hatton. 1999. “Natural Convection from Heated Room Surfaces.” Energy and Buildings 30 (3): 233–244. doi:10.1016/S0378-7788(99)00004-3.
  • Awbi, H. B., and A. Hatton. 2000. “Mixed Convection from Heated Room Surfaces.” Energy and Buildings 32 (2): 153–166. doi:10.1016/S0098-8472(99)00063-5.
  • Beausoleil-Morrison, I. 1999. “Modelling Mixed Convection Heat Transfer at Internal Building Surfaces.” Proceedings of the International Building Performance Simulation Association, Kyoto.
  • Beausoleil-Morrison, I. 2000. “The Adaptive Coupling of Heat and Air Flow Modelling Within Dynamic Whole-Building Simulation.” PhD diss., University of Strathclyde, Glasgow, UK.
  • Buckett, N., and J. Burgess. 2007. “Real Experience of Retrofitting for Sustainability.” Paper presented at the SB07 NZ Conference: Transforming our Built Environment, Auckland, November 14–16. https://www.branz.co.nz/books_popup.php?id=18688.
  • Calay, R. K., A. E. Holdø, and G. P. Hammond. 1998. “Natural Convective Heat Transfer Rates in Rectangular Enclosures.” Building and Energy 27 (2): 137–146. doi:10.1016/S0378-7788(97)00030-3.
  • Cengel, Y. A., and J. G. Afshin. 2015. Heat and Mass Transfer: Fundamentals and Applications. 5th ed. New York: Mc-Graw Hill Education. ISBN-13: 978-0073398181.
  • Fisher, D. E. 1995. “An Experimental Investigation of Mixed Convection Heat Transfer in a Rectangular Enclosure.” PhD diss., University of Illinois, Urbana, USA.
  • Fisher, D. E., and C. O. Pedersen. 1997. “Convective Heat Transfer in Building Energy and Thermal Load Calculations.” ASHRAE Transactions 103 (2): 137–148.
  • Franke, J., A. Hellsten, H. Schlünzen, and B. Carissimo, eds. 2007. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment. Brussels: COST Office. 3-00-018312-4.
  • Goethals, K., H. Breesch, and A. Janssens. 2011. “Sensitivity Analysis of Predicted Night Cooling Performance to Internal Convective Heat Transfer Modelling.” Energy and Building 43 (9): 2429–2441. doi:10.1016/j.enbuild.2011.05.033.
  • Hiller, M., S. Holst, T. Welfonder, A. Weber, and M. Koschenz. 2002. “TRNFLOW: Integration of the Airflow Model COMIS into the Multi-Zone Building Model of TRNSYS.” TRANSSOLAR Energietechnik Gmbh. https://www.trnsys.de/download/en/trnflow_shortinfo_en.pdf.
  • Hunt, G. R., and P. F. Linden. 1999. “The Fluid Mechanics of Natural Ventilation: Displacement Ventilation by Buoyancy-Driven Flows Assisted by Wind.” Building and Environment 34 (6): 707–720. doi:10.1016/S0360-1323(98)00053-5.
  • Khalifa, A. J. N. 1989. “Heat Transfer Processes in Buildings.” PhD diss., University of Wales College of Cardiff, Cardiff, UK.
  • Khalifa, A. J. N., and R. H. Marshall. 1990. “Validation of Heat Transfer Coefficients on Interior Building Surfaces Using a Real-Sized Indoor Test Cell.” International Journal of Heat and Mass Transfer 33 (10): 2219–2236. doi:10.1016/0017-9310(90)90122-B.
  • Lomas, K. J. 1996. “The U.K. Applicability Study: An Evaluation of Thermal Simulation Programs for Passive Solar House Design.” Building and Environment 31 (3): 197–206. doi:10.1016/0360-1323-1323(95)00050-X. doi: 10.1016/0360-1323(95)00050-X
  • Mirsadeghi, M., D. Costola, B. J. E. Blocken, and J. L. M. Hensen. 2013. “Review of External Convective Heat Transfer Coefficient Models in Building Energy Simulation Programs: Implementation and Uncertainty.” Applied Thermal Engineering 56 (1-2): 134–151. doi:10.1016/j.applthermaleng.2013.03.003.
  • Norris, S. E., and T. N. Anderson. 2015. “A CFD Model of Natural Convection in a Partially Open Enclosure.” Paper presented at the 9th Australasian Heat and Mass Transfer Conference (AHMT2015), Melbourne, December 14–15.
  • Orme, M. L., and N. Leksmono. 2002. AIVC Guide 5: Ventilation Modelling Data Guide. AIVC. Brussels.
  • Pokhrel, M. K., T. N. Anderson, J. Currie, and T. T. Lie. 2016. “Examining the Thermal Comfort Characteristics of Naturally Ventilated Residential Buildings in New Zealand.” In Proceedings of the 2016 Asia-Pacific Solar Research Conference, edited by R. Egan and R. Passey. Canberra, Australia: Australian PV Instutute. ISBN: 978-0-6480414-0-5.
  • Pokhrel, M. K., T. N. Anderson, and T. T. Lie. 2017. “Improving the Robustness of the Thermal Models of Natural Ventilated Buildings.” In Proceedings of the Asia-Pacific Solar Research Conference 2017, edited by R. Egan and R. Passey. Melbourne, Australia: Australian PV Institute. ISBN: 978-0-6480414-1-2.
  • Ryan, V., G. Burgess, and L. Easton. 2008. New Zealand House Typologies to Inform Energy Retrofits. Auckland, New Zealand: Beacon Pathway.
  • Spitler, J., C. Pedersen, and D. Fisher. 1991b. “Interior Convective Heat Transfer in Buildings with Large Ventilative Flow Rates.” ASHRAE Transactions 97 (1): 505–515.
  • Spitler, J., C. Pedersen, D. Fisher, P. Menne, and J. Cantillo. 1991a. “An Experimental Facility for Investigation of Interior Convective Heat Transfer.” ASHRAE Transactions 97 (1): 497–504.
  • Stabat, T., M. Caciolo, and D. Marchio. 2012. “Progress on Single-Sided Ventilation Techniques for Buildings.” Advances in Building Energy Research 6 (2): 212–241. doi:10.1080/17512549.2012.740903.
  • Swami, M. V., and S. Chandra. 1988. “Correlations for Pressure Distribution of Buildings and Calculation of Natural-Ventilation Airflow.” ASHRAE Transactions 94: 243–266.
  • Tan, G. 2005. “Study of Natural Ventilation Design by Integrating the Multi-Zone Model with CFD Simulation.” PhD diss., Massachusetts Institute of Technology.
  • Teodosiu, C., F. Kuznik, and R. Teodosiu. 2014. “CFD Modeling of Buoyancy Driven Cavities with Internal Heat Source-Application to Heated Rooms.” Energy and Buildings 68: 403–411. doi:10.1016/j.enbuild.2013.09.041.
  • TPU (Tokyo Polytechnic University). n.d. “Aerodynamic Database of Low-Rise Buildings.” Accessed April 29, 2019. https://www.wind.arch.t-kougei.ac.jp/info_center/windpressure/lowrise/mainpage.html.
  • Uzair, M. 2018. “Wind Induced Heat Losses from Solar Dish-Receiver System.” PhD diss., Auckland University of Technology.
  • Uzair, M., T. Anderson, and R. J. Nates. 2017. “The Impact of the Parabolic Disc Concentrator on the Wind Induced Heat Loss From its Receiver.” Solar Energy 151: 95–101. doi:10.1016/j.solener.2017.05.022.
  • Yamanaka, T., H. Kotani, K. Iwamoto, and M. Kato. 2006. “Natural, Wind-Forced Ventilation Caused by Turbulence in a Room with a Single Opening.” International Journal of Ventilation 5 (1): 179–187. doi:10.1080/14733315.2006.11683735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.