198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Post-harvesting glyphosate and imazapyr application on Eucalyptus stumps to control coppice

, , , , ORCID Icon, & show all
Pages 97-104 | Received 13 Apr 2022, Accepted 05 Jul 2022, Published online: 15 Aug 2022

References

  • AGROFIT (Sistemas de Agrotóxicos Fitossanitários). 2020. Ministério da Agricultura, Pecuária e Abastecimento (MAPA) do Brasil. [accessed 2020 Apr 15]. www.agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons
  • Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 22(6):711–728. doi:10.1127/0941-2948/2013/0507.
  • BASF. 2018. Chopper Florestal®: herbicida para pinus e eucalipto. [accessed 2020 Apr 20]. http://www.agriculture.basf.com/br/pt/Proteção-de-Cultivos/Chopper-Florestal
  • Burrows GE. 2013. Buds, bushfires and resprouting in the eucalypts. Australian Journal of Botany. 61(5):331. doi:10.1071/BT13072.
  • Caetano MS, Ramalho TC, Botrel DF, da Cunha EFF, de Mello WC. 2012. Understanding the inactivation process of organophosphorus herbicides: a DFT study of glyphosate metallic complexes with Zn 2+, Ca 2+, Mg 2+, Cu 2+, Co 3+, Fe 3+, Cr3+, and Al3+. International Journal of Quantum Chemistry. 112(15):2752–2762. doi:10.1002/qua.23222.
  • Cerveira Junior WR, da Costa YKS, Carbonari CA, Duke SO, Alves PL, de Carvalho LB. 2020. Growth, morphological, metabolic and photosynthetic responses of clones of eucalyptus to glyphosate. Forest Ecology and Management. 470–471:118218. doi:10.1016/j.foreco.2020.118218.
  • Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE. 2013. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist. 197(1):19–35. doi:10.1111/nph.12001.
  • da Silva Borges MP, Silva DV, de Freitas Souza M, Silva TS, da Silva Teófilo TM, da Silva CC, Pavão QS, de Jesus Passos ABR, dos Santos JB. 2021. Glyphosate effects on tree species natives from Cerrado and Caatinga Brazilian biome: assessing sensitivity to two ways of contamination. Science of the Total Environment. 769:144113. doi:10.1016/j.scitotenv.2020.144113.
  • de Andrade TCGR, Bacha AL, de Camargo MB, de Carvalho LB. 2022. Influence of phosphorus fertilization on the response of pinus genotypes to glyphosate subdoses. New Forests. 53(1):143–160. doi:10.1007/s11056-021-09849-y.
  • de Carvalho LB, Alves PL da CA, da Costa FRD. 2015. Differential response of clones of eucalypt to glyphosate. Revista Árvore. 39(1):177–187. doi:10.1590/0100-67622015000100017.
  • de Castro EB, Carbonari CA, Velini ED, Belapart D, Gomes GLGC, Ben R. 2016. Absorção, translocação e efeitos metabólicos do glyphosate em plantas de eucalipto. Scientia Forestalis. 44(11):719–727. doi:10.18671/scifor.v44n111.18.
  • de Freitas-Silva L, de Araújo TO, Nunes-Nesi A, Ribeiro C, Costa AC, da Silva LC. 2020. Evaluation of morphological and metabolic responses to glyphosate exposure in two neotropical plant species. Ecological Indicators. 113:106246. doi:10.1016/j.ecolind.2020.106246.
  • de Souza FC, dos Reis GG, Reis Mdas GF, Leite HG, de Faria RS, Caliman JP, Barbosa RA, de Oliveira CHR. 2016. Growth of intact plants and coppice in short rotation eucalypt plantations. New Forests. 47(2):195–208. doi:10.1007/s11056-015-9509-1.
  • Douglass CH, Nissen SJ, Meiman PJ, Kniss AR. 2016. Impacts of imazapyr and triclopyr soil residues on the growth of several restoration species. Rangeland Ecology & Management. 69(3):199–205. doi:10.1016/j.rama.2016.01.006.
  • Drake PL, Mendham DS, White DA, Ogden GN. 2009. A comparison of growth, photosynthetic capacity and water stress in Eucalyptus globulus coppice regrowth and seedlings during early development. Tree Physiology. 29(5):663–674. doi:10.1093/treephys/tpp006.
  • Drake PL, Mendham DS, White DA, Ogden GN, Dell B. 2012. Water use and water-use efficiency of coppice and seedling Eucalyptus globulus Labill.: a comparison of stand-scale water balance components. Plant and Soil. 350(1–2):221–235. doi:10.1007/s11104-011-0897-5.
  • Firmino LE, Tuffi Santos LD, Ferreira FA, Ferreira LR, Tiburcio RAS. 2008. Sorção do imazapyr em solos com diferentes texturas. Planta Daninha. 26(2):395–402. doi:10.1590/S0100-83582008000200016.
  • Florencia FM, Carolina T, Enzo B, Leonardo G. 2017. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina). Ecotoxicology and Environmental Safety. 144:360–368. doi:10.1016/j.ecoenv.2017.06.049.
  • Gianelli VR, Bedmar F, Costa JL. 2014. Persistence and sorption of imazapyr in three Argentinean soils: persistence and sorption of imazapyr in Argentinean soils. Environmental Toxicology and Chemistry. 33(1):29–34. doi:10.1002/etc.2400.
  • Gonçalves JL de M, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, de Barros Ferraz SF, de Paula Lima W, Brancalion PHS, Hubner A, et al. 2013. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology and Management. 301:6–27. doi:10.1016/j.foreco.2012.12.030.
  • Hubbard RM, Stape J, Ryan MG, Almeida AC, Rojas J. 2010. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management. 259(9):1714–1721. doi:10.1016/j.foreco.2009.10.028.
  • IBÁ (Indústria Brasileira de Árvores). 2019. Report 2019. [accessed 2020 Apr 15]. www.iba.org
  • Isbister KM, Lamb EG, Stewart KJ. 2017. Herbicide toxicity testing with non-target boreal plants: the sensitivity of Achillea millefolium L. and Chamerion angustifolium L. to triclopyr and imazapyr. Environmental Management. 60(1):136–156. doi:10.1007/s00267-017-0867-7.
  • Kogan M, Alister C. 2010. Glyphosate use in forest plantations. Chilean Journal of Agricultural Research. 70(4):652–666. doi:10.4067/S0718-58392010000400017.
  • Little KM. 2003. Killing Eucalyptus grandis cut stumps after multiple coppice rotations in the KwaZulu-Natal midlands, South Africa. The Southern African Forestry Journal. 199:7–13. doi:10.1080/20702620.2003.10431745.
  • Little KM. 2007. Final results from a Eucalyptus grandis x E. camaldulensis coppice trial. Scientia Forestalis. 76:85–90.
  • Little KM, Eccles NS. 2000. Control of Eucalyptus grandis cut-stumps of single-stem origin. The Southern African Forestry Journal. 187(1):45–49. doi:10.1080/10295925.2000.9631255.
  • Little KM, Gardner RAW. 2003. Coppicing ability of 20 Eucalyptus species grown at two high-altitude sites in South Africa. Canadian Journal of Forest Research. 33(2):181–189. doi:10.1139/x02-170.
  • Little KM, van den Berg GJ. 2007. Comparison of different herbicides for single stem Eucalyptus macarthurii cut stump control. Journal of Tropical Forest Science. 19:13–17. http://www.jstor.org/stable/43594692
  • Martins GL, Friggi CA, Prestes OD, Vicari MC, Friggi DA, Adaime MB, Zanella R. 2014. Simultaneous LC–MS/MS determination of imidazolinone herbicides together with other multiclass pesticide residues in soil. Clean–Soil, Air, Water. 42(10):1441–1449. doi:10.1002/clen.201300140.
  • Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. 2020. Controversies over human health and ecological impacts of glyphosate: is it to be banned in modern agriculture? Environmental Pollution. 263:114372. doi:10.1016/j.envpol.2020.114372.
  • Minogue PJ, Lorentz KA. 2020. Comparison of aminocyclopyrachlor to standard herbicides for basal stem treatment of Eucalyptus benthamii. Weed Technology. 35:304–308. doi:10.1017/wet.2020.111.
  • Minogue PJ, Osiecka A, Lauer DK. 2018. Selective herbicides for establishment of Eucalyptus benthamii plantations. New Forests. 49:529–550. doi:10.1007/s11056-018-9637-5.
  • Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ. 2015. Changes in planted forests and future global implications. Forest Ecology and Management. 352:57–67. doi:10.1016/j.foreco.2015.06.021.
  • Queiroz AA, Martins JAS, Cunha JPAR. 2008. Adjuvants and water quality in pesticide application. Bioscience Journal. 24(4):8–19.
  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
  • Roberts JC, Little KM, Light ME. 2016. The use of glyphosate for the management of secondary coppice regrowth in a Eucalyptus grandis × E. urophylla coppice stand in Zululand, South Africa. Southern Forests: a Journal of Forest Science. 78(3):217–223. doi:10.2989/20702620.2016.1183094.
  • Roberts JC, Little KM, Light ME. 2018. A comparison of the cost-effectiveness of different eucalypt cut-stump control management options to reduce competition from coppice regrowth during stand establishment in Mpumalanga, South Africa. Southern Forests: a Journal of Forest Science. 80(3):261–268. doi:10.2989/20702620.2017.1354283.
  • Rocha JHT, Wenzel AVA, Melo EASC, Lima ÂSF, Hakamada RE, de Vicente Ferraz A, Arthur Junior JC, de Moraes Gonçalves JL, Moreira G, Gonçalves AN. 2019. Responses of coppiced Eucalyptus to macro- and micronutrient application. New Forests. 50(5):717–731. doi:10.1007/s11056-018-09695-5.
  • Rodrigues BN, Almeida F. 2018. Guia de herbicidas. Londrina (Brazil): Iapar.
  • Rolando C, Baillie B, Thompson D, Little K. 2017. The risks associated with glyphosate-based herbicide use in planted forests. Forests. 8(6):208. doi:10.3390/f8060208.
  • Salgado TP, Alves PLCA, Kuva MA, Takahashi EN, Dias TCS, Lemes LN. 2011. Sintomas da intoxicação inicial de Eucalyptus proporcionados por subdoses de glyphosate aplicadas no caule ou nas folhas. Planta Daninha. 29(4):913–922. doi:10.1590/S0100-83582011000400022.
  • Salgado T, Pereira FCM, Kuva MA, Alves PLCA. 2017. Effects of glyphosate on growth, yield and wood of Eucalyptus grandis. Journal of Tropical Forest Science. 29(3):257–266. doi:10.26525/jtfs2017.29.3.257266.
  • Silva NF, Barros NF, Neves JCL, Schulthais F, Novais RF, Mattiello EM. 2020. Yield and nutrient demand and efficiency of eucalyptus under coppicing regime. Forests. 11(8):852. doi:10.3390/f11080852.
  • Silva CMM, Ferreira LR, Ferreira FA, Miranda GV. 2004. Root exudation of imazapyr by eucalypt, cultivated in soil. Planta Daninha. 22(1):109–116. doi:10.1590/S0100-83582004000100014.
  • Tuffi Santos LD, Ferreira FA, Ferreira LR, Duarte WM, Tiburcio RAS, Santos MV. 2006. Intoxicação de espécies de eucalipto submetidas à deriva do glyphosate. Planta Daninha. 24(2):259–264. doi:10.1590/S0100-83582006000200020.
  • Viti ML, Alves PAT, Mendes KF, Pimpinato RF, Guimarães ACD, Tornisielo VL. 2019. Translocation and root exudation of glyphosate by Urochloa brizantha and its transport on sugarcane and citrus seedlings. Planta Daninha. 37:e019183334. doi:10.1590/s0100-83582019370100030.
  • Weinzettel J, Pfister S. 2019. International trade of global scarce water use in agriculture: modeling on watershed level with monthly resolution. Ecological Economics. 159:301–311. doi:10.1016/j.ecolecon.2019.01.032.
  • Yavari S, Abualqumboz M, Sapari N, Hata-Suhaimi HA, Nik-Fuaad NZ, Yavari S. 2020. Sorption of imazapic and imazapyr herbicides on chitosan-modified biochars. International Journal of Environmental Science and Technology. 17:3341–3350. doi:10.1007/s13762-020-02629-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.