313
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of site, silviculture and tree social status on internal checking variation in plantation-grown Eucalyptus nitens

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 70-89 | Received 21 May 2023, Accepted 19 Mar 2024, Published online: 08 May 2024

References

  • Aguilera A, Inpinza L. 2009. Distribution of within-ring internal checking in Pinus radiata grown in Southern Chile. Maderas Ciencia y Tecnología. 11(2):97–105. doi:10.4067/S0718-221X2009000200001.
  • Aiso-Sanada H, Ishiguri F, Ditoksumpun S, Nezu I, Tanabe J, Ohshima J, Yokota S. 2019. Effects of thinning on anatomical characteristics and wood properties of 12-year-old Eucalyptus camaldulensis trees planted in Thailand. Tropics. 28(3):67–73. doi:10.3759/tropics.MS19-04.
  • Alexiou PN, Wilkins AP, Hartley J. 1990. Effect of pre-steaming on drying rate, wood anatomy and shrinkage of regrowth Eucalyptus pilularis Sm. Wood Science and Technology. 24(1):103–110. doi:10.1007/BF00225310.
  • Ananías RA, Sepúlveda-Villarroel V, Pérez-Peña N, Leandro-Zuñiga L, Salvo-Sepúlveda L, Salinas-Lira C, Cloutier A, Elustondo DM. 2014. Collapse of Eucalyptus nitens wood after drying depending on the radial location within the stem. Drying Technology. 32(14):1699–1705. doi:10.1080/07373937.2014.924132.
  • Ananías RA, Sepúlveda-Villarroel V, Pérez-Peña N, Torres-Mella J, Salvo-Sepúlveda L, Castillo-Ullo D, Salinas-Lira C. 2020. Radio frequency vacuum drying of Eucalyptus nitens juvenile wood. Bio Resources. 15(3):4886–4897. doi:10.15376/biores.15.3.4886-4897.
  • Apley DW, Zhu J. 2020. Visualizing the effects of predictor variables in black box supervised learning models. Journal of the Royal Statistical Society Series B: Statistical Methodology. 82(4):1059–1086. doi:10.1111/rssb.12377.
  • Ball RD, MS M, Cown DJ. 2005. Evidence for associations between SilviScan-measured wood properties and intraring checking in a study of twenty-nine 6-year-old Pinus radiata. Canadian Journal of Forest Research. 35(5):1156–1172. doi:10.1139/x05-031.
  • Biecek P. 2018. DALEX: explainers for complex predictive models in R. The Journal of Machine Learning Research. 19(1):3245–3249.
  • Blackburn DP, Hamilton M, Harwood C, Innes T, Potts B, Williams D. 2010. Stiffness and checking of Eucalyptus nitens sawn boards: genetic variation and potential for genetic improvement. Tree Genetic & Genomes. 6(5):757–765. doi:10.1007/s11295-010-0289-7.
  • Blakemore P. 2011. Internal checking during eucalypt processing. In: Bucur V, editor. Delamination in wood, wood products and wood-based composites. Dordrecht (Netherlands): Springer; p. 237–254.
  • Borukanlu MR, Zadeh OH, Moradpour P, Khedive E. 2021. Effects of growth rate of eastern poplar trees on the chemical and morphological characteristics of wood fibers. European Journal of Wood and Wood Products. 79(6):1479–1494. doi:10.1007/s00107-021-01711-4.
  • Bowling AJ, Vaughn KC. 2008. Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. American Journal of Botany. 95(6):655–663. doi:10.3732/ajb.2007368.
  • Breiman L. 2001. Random Forests. Machine Learning. 45(1):5–32. doi:10.1023/A:1010933404324.
  • Breiman L, Friedman J, Stone CJ, Olshen RA. 1984. Classification and regression trees. Boca Raton (FL): Chapman and Hall/CRC.
  • Chafe SC, Barnacle JE, Hunter AJ, Ilic J, Northway RL, Rozsa AN. 1992. Collapse: an introduction. Melbourne (Australia): CSIRO Division of Forest Products.
  • Clair B, Alteyrac J, Gronvold A, Espejo J, Chanson B, Alméras T. 2013. Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees. Annals of Forest Science. 70(8):801–811. doi:10.1007/s13595-013-0318-4.
  • Clair B, Thibaut B. 2014. Physical and mechanical properties of reaction wood. In: Gardiner B, Barnett J, Saranpää P Gril J, editors. The biology of reaction wood. Berlin, Heidelberg (Germany): Springer Berlin Heidelberg; p. 171–200.
  • Dassot M, Fournier M, Ningre F, Constant T. 2012. Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model. American Journal of Botany. 99(9):1427–1435. doi:10.3732/ajb.1200086.
  • Dawson BSW, Pearson H, Kimberley MO, Davy B, Dickson AR. 2020. Effect of supercritical CO2 treatment and kiln drying on collapse in Eucalyptus nitens wood. European Journal of Wood and Wood Products. 78(2):209–217. doi:10.1007/s00107-020-01500-5.
  • Diaconu D, Stangler DF, Kahle HP, Spiecker H, Ryan M. 2016. Vessel plasticity of European beech in response to thinning and aspect. Tree Physiology. 36(10):1260–1271. doi:10.1093/treephys/tpw053.
  • Downes GM, Harwood CE, Wiedemann J, Ebdon N, Bond H, Meder R. 2012. Radial variation in Kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy. Canadian Journal of Forest Research. 42(8):1577–1586. doi:10.1139/x2012-083.
  • Downes GM, Lausberg M, Potts B, Pilbeam D, Bird M, Bradshaw B. 2018. Application of the IML Resistograph to the infield assessment of basic density in plantation eucalypts. Australian Forestry. 81(3):177–185. doi:10.1080/00049158.2018.1500676.
  • Downes GM, Meder R, Bond H, Ebdon N, Hicks C, Harwood C. 2011. Measurement of cellulose content, Kraft pulp yield and basic density in eucalypt woodmeal using multisite and multispecies near infra-red spectroscopic calibrations. Southern Forests. 73(3–4):181–186. doi:10.2989/20702620.2011.639489.
  • Downes GM, Touza M, Harwood C, Wentzel-Vietheer M. 2014. NIR detection of non-recoverable collapse in sawn boards of Eucalyptus globulus. European Journal of Wood and Wood Products. 72(5):563–570. doi:10.1007/s00107-014-0813-9.
  • Ellis N, Smith SJ, Pitcher CR. 2012. Gradient forests: calculating importance gradients on physical predictors. Ecology. 93(1):156–168. doi:10.1890/11-0252.1.
  • Forrester DI, Baker TG. 2012. Growth responses to thinning and pruning in Eucalyptus globulus, Eucalyptus nitens, and Eucalyptus grandis plantations in southeastern Australia. Canadian Journal of Forest Research. 42(1):75–87. doi:10.1139/x11-146.
  • Frieman JH, Popescu BE. 2008. Predictive learning via rule ensembles. Annals of Applied Statistics. 2(3):916–954. doi:10.1214/07-AOAS148.
  • Gacitúa WE, Aldo Ballerini A, Lasserré JP, Bahr D. 2007. Nanoindentations and ultrastructure in Eucalyptus nitens with micro and mesocracks. Maderas: Ciencia y Tecnologia. 9(3):259–270. doi:10.4067/S0718-221X2007000300006.
  • Gendvilas V, Downes GM, Neyland M, Hunt M, Harrison PA, Jacobs A, Williams D, O’Reilly-Wapstra J. 2021. Thinning influences wood properties of plantation-grown Eucalyptus nitens at three sites in Tasmania. Forests. 12(10):1304. doi:10.3390/f12101304.
  • Gendvilas V, Downes GM, Neyland M, Hunt M, Jacobs A, O’Reilly-Wapstra J. 2020. Friction correction when predicting wood basic density using drilling resistance. Holzforschung. 75(6):508–516. doi:10.1515/hf-2020-0156.
  • Gendvilas V, Neyland M, Rocha-Sepúlveda MF, Downes GM, Hunt M, Jacobs A, Williams D, Vega M, O’Reilly-Wapstra J, Auty D. 2022. Effects of thinning on the longitudinal and radial variation in wood properties of Eucalyptus nitens. Forestry: An International Journal of Forest Research. 95(4):504–517. doi:10.1093/forestry/cpac007.
  • Hamilton MG, Joyce K, Williams D, Dutkowski G, Potts B. 2008. Achievements in forest tree improvement in Australia and New Zealand – 9. Genetic improvement of Eucalyptus nitens in Australia. Australian Forestry. 71(2):82–93. doi:10.1080/00049158.2008.10676274.
  • Harris GA, Torgovnikov G, Vinden P, Brodie GI, Shaginov A. 2008. Microwave pretreatment of backsawn messmate boards to improve drying quality: Part 1. Drying Technology. 26(5):579–584. doi:10.1080/07373930801944770.
  • Hillis WE. 1987. Heartwood and tree exudates. In: Wimmer R, editor. Springer Series in Wood Science. Vol. 4. Berlin (Germany): Springer; p. 268.
  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biometrical Journal. 50(3):346–363. doi:10.1002/bimj.200810425.
  • Ilic J. 1999. Shrinkage-related degrade and its association with some physical properties in Eucalyptus regnans F-Muell. Wood Science and Technology. 33(5):425–437. doi:10.1007/s002260050127.
  • Ilic J, Hillis WE. 1986. Prediction of collapse in dried eucalypt wood. Holzforschung. 40(2):109–112. doi:10.1515/hfsg.1986.40.2.109.
  • Innes TC. 1996a. Collapse and internal checking in the latewood of Eucalyptus regnans F. Muell. Wood Science and Technology. 30(6):373–383. doi:10.1007/BF00244434.
  • Innes TC. 1996b. Pre-drying of collapse prone wood free of surface and internal checking. Holz als Roh – und Werkstoff. 54(3):195–199. doi:10.1007/s001070050165.
  • Innes TC. 2007. Processing and wood properties of four ages of Eucalyptus obliqua. Holz als Roh – und Werkstoff. 65(3):197–200. doi:10.1007/s00107-006-0138-4.
  • Kamal K, Qayyum R, Mathavan S, Zafar T. 2017. Wood defects classification using laws texture energy measures and supervised learning approach. Advanced Engineering Informatics. 34:125–135. doi:10.1016/j.aei.2017.09.007.
  • Ke Z-N, Zhao Q-J, Huang C-H, Ai P, Yi J-G. 2016. Detection of wood surface defects based on particle swarm-genetic hybrid algorithm. International Conference on Audio, Language and Image Processing (ICALIP), Shanghai (China): Institute of Electrical and Electronics Engineers Inc.
  • Kininmonth JA. 1972. Permeability and fine-structure of certain hardwoods and effects on drying. 2. Differences in fine-structure of Nothofagus fusoa sapwood and heartwood. Holzforschung. 26(1):32–38. doi:10.1515/hfsg.1972.26.1.32.
  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest Package: tests in linear mixed effects models. Journal of Statistical Software. 82(13):1–26. doi:10.18637/jss.v082.i13.
  • Lachenbruch B, Moore JR, Evans R. 2011. Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. Size- and age-related changes in tree structure and function. Dordrecht (Netherlands): Springer; p. 121–164.
  • Lausberg M, Gilchrist K, Skipwith J. 1995. Wood properties of Eucalyptus nitens grown in New Zealand. New Zealand Journal of Forestry Science. 25(2):147–163.
  • Leandro-Zúñiga L, Ananías RA, Cloutier A, Díaz-Vaz JE, Bermedo M, Sanhueza R, Lasserre JP. 2008. Estudio preliminar de las grietas internas en anillos de madera inicial y su relación con características de la estructura anatómica y densidad en Eucalyptus nitens. Interciencia. 33(11):829–834.
  • Lenth R, Singmann H, Love J, Buerkner P, Herve M. 2020. Emmeans: estimated marginal means, aka least-squares means (Version 1.4.5) [computer software]. [ accessed 2021 Jan]. https://CRAN.R-project.org/package=emmeans.
  • Ligges U, Short T, Kienzle P, Schnackenberg S, Billinghurst D, Borchers H-W, Carezia A, Dupuis P, Eaton JW, Farhi E. 2015. Package ‘signal’. Vienna (Austria): R Foundation for Statistical Computing.
  • McKenzie H, Turner J, Shelbourne C. 2003. Processing young plantation-grown Eucalyptus nitens for solid-wood products. 1: individual-tree variation in quality and recovery of appearance-grade lumber and veneer. New Zealand Journal of Forestry Science. 33(1):62–78.
  • Medhurst J, Downes G, Ottenschlaeger M, Harwood C, Evans R, Beadle C. 2012. Intra-specific competition and the radial development of wood density, microfibril angle and modulus of elasticity in plantation-grown Eucalyptus nitens. Trees – Structure and Function. 26(6):1771–1780. doi:10.1007/s00468-012-0746-z.
  • Meyer R, Barton G. 1971. A relationship between collapse and extractives in western red cedar. Forest Products Journal. 21(4):58–60.
  • Misra RK, Turnbull CRA, Cromer RN, Gibbons AK, LaSala AV. 1998. Below- and above-ground growth of Eucalyptus nitens in a young plantation: I. Biomass Forest Ecology and Management. 106(2):283–293. doi:10.1016/S0378-1127(97)00339-3.
  • Molnar C, Casalicchio G, Bischl B. 2018. Iml: an R package for interpretable machine learning. Journal of Open Source Software. 3(26):786. doi:10.21105/joss.00786.
  • Pang S, Orchard R, McConchie D. 1999. Tangential shrinkage of Pinus radiata earlywood and latewood, and its implication for within-ring internal checking. New Zealand Journal of Forestry Science. 29(3):484–491.
  • Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA, Lloret F. 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters. 19(3):240–248. doi:10.1111/ele.12559.
  • Phelps JE, Workman EC. 1994. Vessel area studies in white oak (Quercus alba L.). Wood and Fiber Science. 26(3):315–322.
  • Phonetip K, Ozarska B, Brodie GI. 2017. Comparing two internal check measurement methods for wood drying quality assessment. European Journal of Wood and Wood Products. 75(1):139–142. doi:10.1007/s00107-016-1115-1.
  • Putoczki TL, Nair H, Butterfield B, Jackson SL. 2007. Intra-ring checking in Pinus radiata D. Don: the occurrence of cell wall fracture, cell collapse, and lignin distribution. Trees – Structure and Function. 21(2):221–229. doi:10.1007/s00468-006-0114-y.
  • Rahiddin RNN, Hashim UR, Ismail NH, Salahuddin L, Choon NH, Zabri SN. 2020. Classification of wood defect images using local binary pattern variants. International Journal of Advances in Intelligent Informatics. 6(1):36–45. doi:10.26555/ijain.v6i1.392.
  • Raymond CA. 2000. Tree breeding issues for solid wood production. In: The future of eucalypts for solid wood products. Proceedings of an IUFRO Conference; 2000 Mar 19–24; Hobart, Tasmania. Vienna (Austria): International Union of Forest Research Organizations.
  • Rebolledo P, Salvo L, Contreras H, Cloutier A, Ananias RA. 2013. Variation of internal checks related to anatomical structure and density in eucalyptus nitens wood. Wood and Fiber Science. 45(3):279–286.
  • Rocha-Sepulveda MF, Vega M, Gendvilas V, Williams D, Harrison PA, Vaillancourt RE, Potts BM. 2021. R-based image analysis to quantify checking and shrinkage from wood wedges. European Journal of Wood and Wood Products. 79(5):1269–1281. doi:10.1007/s00107-021-01715-0.
  • Searson MJ, Thomas DS, Montagu KD, Conroy JP. 2004. Wood density and anatomy of water-limited eucalypts. Tree Physiology. 24(11):1295–1302. doi:10.1093/treephys/24.11.1295.
  • Shelbourne CJA, Nicholas ID, McKinley RB, Low CB, McConnochie RM, Lausberg MJF. 2002. Wood density and internal checking of young Eucalyptus nitens in New Zealand as affected by site and height up the tree. New Zealand Journal of Forestry Science. 32(3):357–385.
  • Soares BCD, Lima JT, Da Silva JRM. 2021. Relationships between vessel parameters and cleavage associated with checking in Eucalyptus grandis wood. Maderas: Ciencia y Tecnologia. 23:8. doi:10.4067/S0718-221X2021000100443.
  • TAPPI Standards. 2016. Basic density and moisture content of pulpwood (T258 Om-16). Atlanta (GA): TAPPI Press.
  • Valenzuela PC, Cecilia Bustos A, Lasserre JP, William Gacitúa E. 2012. Characterization nanomechanics of wood cell structure and anatomy in Eucalyptus nitens and its relation to the cracking and fractures in round wood. Maderas: Ciencia y Tecnologia. 14(3):321–337. doi:10.4067/S0718-221X2012000200009.
  • Vega M, Hamilton M, Downes G, Harrison PA, Potts B. 2020. Radial variation in modulus of elasticity, microfibril angle and wood density of veneer logs from plantation-grown Eucalyptus nitens. Annals of Forest Science. 77(3):65. doi:10.1007/s13595-020-00961-1.
  • Washusen R, Baker T, Menz D, Morrow A. 2005. Effect of thinning and fertilizer on the cellulose crystallite width of Eucalyptus globulus. Wood Science and Technology. 39(7):569–578. doi:10.1007/s00226-005-0012-2.
  • Washusen R, Harwood C, Morrow A, Northway R, Valencia JC, Volker P, Wood M, Farrell R. 2009. Pruned plantation-grown Eucalyptus nitens: effect of thinning and conventional processing practices on sawn board quality and recovery. New Zealand Journal of Forestry Science. 39(1):39–55.
  • Washusen R, Ilic J. 2001. Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill. Holz als Roh – und Werkstoff. 59(1–2):85–93. doi:10.1007/s001070050480.
  • Washusen R, Ilic J, Waugh G. 2003. The relationship between longitudinal growth strain, tree form and tension wood at the stem periphery of ten- to eleven-year-old Eucalyptus globulus Labill. Holzforschung. 57(3):308–316. doi:10.1515/HF.2003.046.
  • White DA, Crombie DS, Kinal J, Battaglia M, McGrath JF, Mendharn DS, Walker SN. 2009. Managing productivity and drought risk in Eucalyptus globulus plantations in south-western Australia. Forest Ecology and Management. 259(1):33–44. doi:10.1016/j.foreco.2009.09.039.
  • Wimmer R, Downes GM, Evans R. 2002. Temporal variation of microfibril angle in Eucalyptus nitens grown in different irrigation regimes. Tree Physiology. 22(7):449–457. doi:10.1093/treephys/22.7.449.
  • Wood M, McLarin M, Volker P, Syme M. 2009. Management of eucalypt plantations for profitable sawlog production in Tasmania, Australia. Tasforests. 18:117–121.
  • Yang L, Liu H, Cai Y, Hayashi K, Wu Z. 2014. Effect of drying conditions on the collapse-prone wood of Eucalyptus urophylla. Bio Resources. 9(4):7288–7298. doi:10.15376/biores.9.4.7288-7298.
  • Yang L, Liu HH, Cai YC, Wu Z. 2019. A novel method of studying the collapsed cell of Eucalyptus wood using X-ray CT scanning. Drying Technology. 37(12):1597–1604. doi:10.1080/07373937.2018.1519572.
  • Yuniarti K, Ozarska B, Brodie G, Harris G, Waugh G. 2015. Collapse development of Eucalyptus saligna under different drying temperatures. Journal of Tropical Forest Science. 27(4):462–471.