Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 62, 2021 - Issue 2
1,313
Views
13
CrossRef citations to date
0
Altmetric
Research Article

H∞ optimal control of vehicle active suspension systems in two time scales

ORCID Icon &
Pages 284-292 | Received 05 Sep 2020, Accepted 20 May 2021, Published online: 04 Jun 2021

References

  • Huang Y, Na J, Wu X, et al. Approximation-free control for vehicle active suspensions with hydraulic actuator. IEEE Trans Ind Electron. 2018;65:7258–7267.
  • Ning D, Du H, Zhang N, et al. Controllable electrically interconnected suspension system for improving vehicle vibration performance. IEEE/ASME Trans Mechatron. 2020;25(2):859–871.
  • Yuan Y, Ma Y, Xu J, et al. Full-period suspension force accurate modelling for a novel bearingless switched reluctance motor. Electron Lett. 2019;55(21):1119–1121.
  • Zhu Q, Ding J, Yang M. LQG control based lateral active secondary and primary suspensions of high-speed train for ride quality and hunting stability. IET Control Theory Applic. 2018;12(10):1497–1504.
  • Huang Y, Na J, Wu X, et al. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA Trans. 2015;54:145–155.
  • Song J, Niu Y, Zou Y. A parameter-dependent sliding mode approach for finite-time bounded control of uncertain stochastic systems with randomly varying actuator faults and its application to a parallel active suspension system. IEEE Trans Ind Electron. 2018;65(10):8124–8132.
  • Huang Y, Na J, Wu X, et al. Robust adaptive control for vehicle active suspension systems with uncertain dynamics. Trans Inst Meas Control. 2016;40(4):1–13.
  • Zheng X, Zhang H, Yan H, et al. Active full-vehicle suspension control via cloud-aided adaptive backstepping approach. IEEE Trans Cybern. 2020;50(7):3113–3124.
  • Friedrichs K, Wasow W. Singular perturbations of non-linear oscillations. Duke Math J. 1940;13(3):367–381.
  • Tikhonov A. Systems of differential equations containing small parameters in the derivatives. Matematicheskii Sbornik. 1952;31(73):575–586.
  • O’Malley R. Singular perturbation methods for ordinary differential equations. New York (NY): Springer Verlag; 1991.
  • Vasilieva A, Butuzov V, Kalachev L. The boundary function method for singular perturbation problems. Math Comput. 1996;65(215):1366–1368.
  • Vasilieva A. On the development of singular perturbation theory at Moscow State University and elsewhere. SIAM Rev. 1994;36(3):440–452.
  • Saksena V, O’reilly J, Kokotovic P. Singular perturbations and time-scale methods in control theory: survey 1976-1983. Automatica (Oxf). 1984;20(3):273–293.
  • Mudita J, Nagar S, Mohanty R. PSO based reduced order modelling of autonomous AC microgrid considering state perturbation. Automatika. 2020;61(1):66–78.
  • Li T, Wang S. Robust dynamic output feedback sliding mode control of singular perturbation systems. Jpn Soc Mech Eng. 1995;38(4):719–726.
  • Ando Y, Suzuki M. Control of active suspension systems using the singular perturbation method. Control Eng Pract. 1996;4(3):287–293.
  • Kim C, Ro P. Reduced-order modelling and parameter estimation for a quarter-car suspension system. Proc Inst Mech Eng Part D: J Automobile Eng. 2000;214:851–864.
  • Carbinatto C. On the suspension isomorphism for index braids in a singular perturbation problem. Math Notebooks. 2007;8:173–198.
  • Aghazadeh M, Zarabadipour H. Observer and controller design for half-car active suspension system using singular perturbation theory. Adv Mat Res. 2011;403-408:4786–4793.
  • Paarya A, Zarabadipour H. Digital controller design for half-car active suspension system with singular perturbation theory. Adv Mat Res. 2011;403-408:4800–4805.
  • Kokotovic P, O’Reilly J, Khalil H. Singular prturbation mthods in control: analysis and design. Orlando (FL): Academic Press, Inc.; 1986.
  • Ahamd I, Abdurraqeeb A. H∞ control design with feed-forward compensator for hysteresis compensation in piezoelectric actuator. Automatika. 2016;57(3):691–702.
  • Lien C, Vaidyanathan S, Yu K, et al. H∞ performance of continuous switched time-delay systems with sector and norm bounded nonlinearities. Int J Modell Ident Control. 2019;31(3):229–244.
  • Shahad A, Safanah R, Ayman A. Improving the performance of medical robotic system using H∞ loop shaping robust controller. Int J Modell Ident Control. 2020;34(1):3–12.
  • Wu J, Liu Z, Chen W. Design of a piecewise affine H∞ controller for MR semi-active suspensions with nonlinear constraints. IEEE Trans Control Syst Technol. 2019;27(4):1762–1771.
  • Zhang J, Ding F, Zhang N, et al. A new SSUKF observer for sliding mode force tracking H∞ control of electrohydraulic active suspension. Asian J Control. 2020;22(2):761–778.
  • Na J, Huang Y, Wu X, et al. Active adaptive estimation and control for vehicle suspensions with prescribed performance. IEEE Trans Control Syst Technol. 2018;26(6):2063–2077.
  • Dhananjay K, Kumar S. Modeling and simulation of quarter car semi active suspension system using LQR controller. Adv Intell Syst Comput. 2014;1:441–448.
  • BalaMurugan L, Jancirani J. An investigation on semi-active suspension damper and control strategies for vehicle ride comfort and road holding. Proc IMechE Part I: J Syst Control Eng. 2012;226(8):1119–1129.
  • Yury V, Luis A. Advanced H control towards nonsmooth theory and applications. New York (NY): Birkhäuser; 2014.
  • Kokotovic P, O’Malley J, Sannuti P. Singular perturbations and order reduction in control theory–an overview. Automatica (Oxf). 1976;12(2):123–132.
  • Kokotovic P. Subsystem, time scales and multimodeling. Automatica (Oxf). 1981;17(16):789–795.