Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 63, 2022 - Issue 4
3,241
Views
5
CrossRef citations to date
0
Altmetric
Regular Papers

CubeSat project: experience gained and design methodology adopted for a low-cost Electrical Power System

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 695-717 | Received 28 Dec 2020, Accepted 07 Apr 2022, Published online: 25 Apr 2022

References

  • R. A. Joost Elstak, Robert Hamann. A comparative analysis of project management and systems engineering techniques in CubeSat projects; 2009.
  • Elsaesser A, Merenda F, Lindner R, et al. Spectrocube: a European 6U nanosatellite spectroscopy platform for astrobiology and astrochemistry. Acta Astronaut. 2020;170:275–288.
  • Sanchez H, McIntosh D, Cannon H, et al. Starling1: Swarm technology demonstration; 2018.
  • Hand E. “Interplanetary small satellites come of age,” ed: American Association for the Advancement of Science; 2018
  • Rutter L, Barker R, Bezdan D, et al. A new era for space life science: International standards for space omics processing. Patterns. 2020: 100148.
  • Millan RM, Von Steiger R, Ariel M, et al. Small satellites for space science: A COSPAR scientific roadmap. Adv Space Res. 2019;64(8):1466–1517.
  • Garcia-Cuadrado G. Nanosatellites-the tool for a new economy of space: opening space Frontiers to a wider audience. J Aeronautics Aerospace Eng. 2017;6(2):1–11.
  • Selva D, Golkar A, Korobova O, et al. Distributed earth satellite systems: what is needed to move forward? J Aerospace Inform Syst. 2017;14(8):412–438.
  • Oberholzer JF, Uheida E, Oosthuizen G. Resource efficient process chain development of a modular CubeSat spaceframe. Proc Manufact. 2019;35:917–928.
  • Wachowicz ME, Bury M. Space technology transfer problems in the context of protecting the space heritage. Space Policy. 2017;42:66–69.
  • Denis G, Alary D, Pasco X, et al. From new space to big space: How commercial space dream is becoming a reality. Acta Astronaut. 2020;166:431–443.
  • Bôas DJFV, Souza CHM, da Motta Silva F, et al. Proposal of low cost launchers for scientific missions using cubesats. Adv Space Res. 2020;66(1):162–175.
  • Woellert K, Ehrenfreund P, Ricco AJ, et al. Cubesats: cost-effective science and technology platforms for emerging and developing nations. Adv Space Res. 2011;47(4):663–684.
  • Del Corso D, Passerone C, Reyneri L, et al. Design of a university nano-satellite: The PiCPoT case. IEEE Trans Aerospace Electron Syst. 2011;47(3):1985–2007.
  • Cho M, Masui H, Satellite K. Nano-satellite development project and space engineering education at Kyushu Institute of Technology. In: 2013 6th International Conference on Recent Advances in Space Technologies (RAST): IEEE; 2013. p 1059–1063.
  • Roman-Gonzalez A, Quiroz-Olivares AE, Vargas-Cuentas NI. Advances in the UCHSat-1 nanosatellite: design and simulation. Adv Astronautics Sci Technol. 2020;3(1):65–74.
  • Rodríguez J, Laverón-Simavilla A, del Cura JM, et al. Project based learning experiences in the space engineering education at technical University of Madrid. Adv Space Res. 2015;56(7):1319–1330.
  • Walker R, Galeone P, Pageet H, al. “ESA hands-on space education project activities for university students: Attracting and training the next generation of space engineers,” In IEEE EDUCON 2010 Conference: IEEE. p. 1699–1708; 2010.
  • Nieto-Peroy C, Emami MR. Cubesat mission: from design to operation. Appl Sci. 2019;9(15):3110.
  • Kulu E. Nanosatellite Database. http://www.nanosats.eu/index.html#database; 2019.
  • Noca GRM, Jordan F, Scheidegger N, et al. Mission, Space and Ground System Overview. In: Phase B/C Delta-PDR Project, UNINE / HES-SO/EPFL Lausanne Switzerland, 24/08/2007.
  • Ali A, Mughal MR, Ali H, et al. Innovative power management, attitude determination and control tile for CubeSat standard nanosatellites. Acta Astronaut. 2014;96:116–127.
  • Bouwmeester J, Langer M, Gill E. Survey on the implementation and reliability of CubeSat electrical bus interfaces. CEAS Space J. 2017;9(2):163–173.
  • Alanazi A, Straub J. Engineering Methodology for student-driven CubeSats. Aerospace. 2019;6(5):54.
  • M. R. Patel, Spacecraft power systems. CRC Press, 2004.
  • Seddjar A, Kerrouche KDE, Wang L. Simulation of the proposed combined Fuzzy Logic Control for maximum power point tracking and battery charge regulation used in CubeSat. Arch Electr Eng. 2020;69(3).
  • Gonzalez-Llorente J, Rodriguez-Duarte D, Sanchez-Sanjuan S, et al. Improving the efficiency of 3U CubeSat EPS by selecting operating conditions for power converters. In: 2015 IEEE Aerospace Conference: IEEE; 2015. p. 1–7.
  • Wertz WJLAJR. Space Mission Analysis and Design; 1999. p 412–415.
  • ECSS-E-TM-E-10-25A E. S. E.-E. R. S. Division. Noordwijk, The Netherlands, 20 October 2010.
  • Larson WJ, Wertz JR. Space mission analysis and design. Torrance (CA): Microcosm; 1992.
  • e. Clyde Space Ltd. User manual: CubeSat 3U Electronic Power System CS-3UEPS2-NB. 22 Oct. 2014.
  • Schirone L, Macellari M, Schiaratura A. Modular power conversion systems for body-mounted solar panels. In: Proc. 8th European Space Power Conference; 2008.
  • Oredsson M. Electrical power system for the CubeSTAR nanosatellite; 2010.
  • Kerrouche KDE, Wang L, Bendoukhad SA, et al. Reliable protection strategy of power distribution module for university CubeSat. In: Fifth IAA Conference on University Satellite Missions and CubeSat Workshop Rome, Italy 2020, vol. 173, Advances in the Astronautical Sciences ed. [Online]. Available: http://www.univelt.com/book=8071.
  • Sera D, Mathe L, Kerekes T, et al. On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J Photovolt. 2013;3(3):1070–1078.
  • Lyden S, Galligan H, Haque ME. A hybrid simulated annealing and Perturb and observe maximum power point tracking method. IEEE Syst J. 2020.
  • 30% Triple Junction GaAs Solar Cell Assembly. Type: TJ solar cell assembly 3G30A, improved voltage at maximum power point. [Online]. Available: www.azurspace.de.
  • Aoudeche A, Zhao X, Kerrouche KD. Design of a high performance electrical power system for an earth observation nano-satellite. In: Proceedings of the 2018 international conference on electronics and electrical engineering technology: ACM, p. 140–146; 2018.
  • Faiza A, Eddine Kamel KD. Design of electrical power system for low-cost ecological nanosatellite.
  • Veerachary M, Senjyu T, Uezato K. Voltage-based maximum power point tracking control of PV system. IEEE Trans Aerospace Electron Syst. 2002;38(1):262–270.
  • Miyatake M, Veerachary M, Toriumi F, et al. Maximum power point tracking of multiple photovoltaic arrays: A PSO approach. IEEE Trans Aerospace Electron Syst. 2011;47(1):367–380.
  • Balato M, Costanzo L, Marino P, et al. Modified TEODI MPPT technique: theoretical analysis and experimental validation in uniform and mismatching conditions. IEEE J Photovolt. 2016;7(2):604–613.
  • Asundi S, Mahin M, Nagabhushan V, et al. Composite and PCB based implementations of a solar panel design for SwampSat. In: 24th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, United States; 2010.
  • Chin KB, Brandon EJ, Bugga RV, et al. Energy storage technologies for small satellite applications. Proc IEEE. 2018;106(3):419–428.
  • Cook R, Swan L, Plucknett K. Failure mode analysis of lithium ion batteries operated for low Earth orbit CubeSat applications. J Energy Storage. 2020;31:101561.
  • High Power Lithium Ion APR18650M1A. [Online]. Available: www.a123systems.com.
  • Hu X, Li S, Peng H, et al. Robustness analysis of state-of-charge estimation methods for two types of Li-ion batteries. J Power Sourc. 2012;217:209–219.
  • Reddy TB. Linden's handbook of batteries. New York: Mcgraw-hill; 2011.
  • Knap V, Vestergaard LK, Stroe D-I. A Review of battery technology in CubeSats and small satellite solutions. Energies. 2020;13(16):4097.
  • Clark C, Simon E. Evaluation of lithium polymer technology for small satellite applications; 2007.
  • ECSS-Q-40B, SPACE PRODUCT ASSURANCE, SAFETY (17-AY-2002). ESA. [Online]. Available: http://everyspec.com/ESA/ECSS-Q-40B_9522/; 2018.
  • ECSS-E-ST-20C. Space engineering electrical and electronic, E. S. E.-E. R. S. D. Noordwijk, The Netherlands 31 July 2008.
  • Voss D, Coombs J, Fritz T, et al. A novel spacecraft standard for a modular nanosatellite bus in an operationally responsive space environment. In: 7th Responsive Space Conference. p. 1–11; 2009.
  • Novak F, Biasizzo A. Security extension for IEEE Std 1149.1. J Electron Test. 2006;22(3):301–303.
  • ECSS-Q-ST-70-12C – Design rules for printed circuit boards, 14 July 2014.
  • Rekioua D, Matagne E. Optimization of photovoltaic power systems: modelization, simulation and control. Cham: Springer Science & Business Media; 2012.
  • Hunyadi G, Klumpar DM, Jepsen S, et al. A commercial off the shelf (COTS) packet communications subsystem for the Montana EaRth-Orbiting Pico-Explorer (MEROPE) CubeSat. In: Aerospace Conference Proceedings, 2002. IEEE, vol. 1: IEEE. p. 1; 2002.
  • Go S, Bouwmeester J, Brouwer G. Optimized three-unit cubesat structure for Delfi-n3Xt. In: Proceedings of the 59th International Astronautical Congress, Glasgow, Scotland; 2008.
  • Durgadevi SAA, Natarajan SP. Study and implementation of maximum power point tracking (MPPT) algorithm for photovoltaic systems. In: Presented at the in 1st International Conference on Electrical Energy Systems; 2011.
  • Vinther K, Jensen KF, Larsen JA, et al. Inexpensive cubesat attitude estimation using quaternions and unscented Kalman filtering. Autom Contr Aerospace. 2011;4(1):1–12.
  • Ahmed BS, Szasz B, Masanori N. Control system design of an ultra-small deep space probe. Energy Proc. 2016;100:537–550.
  • Kuroiwa F, Bendoukha SA, Okuyama K-I, et al. A redundancy and operation of power control system for a deep-space small probe. J Autom Contr Eng. 2016;4(5):353–359.
  • Kuroiwa F, Okuyama Ki, Nishio M, et al. A design method of an autonomous control system for a deep-space probe. Trans Jpn Soc Aeronautical Space Sci. 2016;14(30):105–112.
  • PIC16F87XA. 28/40/44-Pin Enhanced Flash Microcontrollers.
  • Smith DW. PIC in Practice: A project-based approach. Newnes; 2006.
  • T. Instrument. INA1(8 high-side measurement current shunt monitor). [Online]. Available: www.ti.com/legal/termsofsale.html.
  • ECSS-E-ST-20-08C Rev.1 Space engineering, E. S. E.-E. R. S. Division. Noordwijk, The Netherlands, 18 July 2012. [Online]. Available at http://everyspec.com/ESA/download.php?spec=ECSS-E-ST-20-08C_REV-1.047905.pdf.
  • Fontani D, Sansoni P, Francini F, et al. Electroluminescence Test to investigate the humidity effect on solar cells operation. Energies. 2018;11(10):2659.
  • Namin A, Jivacate C, Chenvidhya D, et al. Construction of tungsten halogen, pulsed LED, and combined tungsten halogen-LED solar simulators for solar cell-characterization and electrical parameters determination. Int J Photoenergy. 2012;2012:1–9.
  • Broder M, Mahr E, Barkmeyeret D, al. Review of three small-satellite cost models. In: AIAA SPACE 2009 conference & exposition. p. 6689; 2009.
  • Stahl HP. Survey of cost models for space telescopes. Opt Eng. 2010;49(5):053005.
  • Corbett J, Crookall J. Design for economic manufacture. CIRP Ann. 1986;35(1):93–97.
  • Mileham A, Currie G, Miles A, et al. A parametric approach to cost estimating at the conceptual stage of design. J Eng Design. 1993;4(2):117–125.
  • Worldway Electronics Limited. https://fr.bomeasy.com/pro/microchip-technology/16f877a-ip/2811281 (accessed 2/8/2021).
  • Mouser Electronics, Inc. https://www.mouser.fr/new/3m/3mpc104/ (accessed 02/08/2021).
  • batt-energy-shop. https://www.batt-energy-shop.de/Akkus/Lithium-Akkus/A123-Systems-APR18650M1–LiFePO4-3-3V-1100mAh.html?language = en (accessed 02/08/2021).
  • high quality pcb. https://www.hqpcb.com/ (accessed 02/08/2021).
  • AZUR SPACE Solar Power GmbH. http://www.azurspace.com/index.php/en/products/products-space/space-solar-cells (accessed 02/08/2021).
  • Suparta W, Zulkeple SK. Investigating space radiation environment effects on communication of Razaksat-1. J Aerospace Technol Manag. 2018;10:1–12.
  • Aguilar AC. Characterization of commercial step-down converter performance in the low Earth orbit radiation environment. Massachusetts Institute of Technology; 2019.
  • Budroweit J, Patscheider H. Risk assessment for the use of COTS devices in space systems under consideration of radiation effects. Electronics (Basel). 2021;10(9):1008.
  • Hodson RF, NESC YC, Pandolf JE, et al. Recommendations on use of commercial-off-the-shelf (COTS) electrical, electronic, and electromechanical (EEE) parts for NASA missions. National Aeronautics and Space Administration, Langley Research Center; 2020.
  • Monteiro JP, Rocha RM, Silva A, et al. Integration and verification approach of ISTSat-1 CubeSat. Aerospace. 2019;6(12):131.
  • Baumann RC. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans Device Mater Reliab. 2005;5(3):305–316.
  • Boscherini M, et al. Radiation damage of electronic components in space environment. Nucl Instr Methods Phys Res Sect A Acceler Spectrom Detect Assoc Equip. 2003;514(1-3):112–116.
  • Maurer RH, Fraeman ME, Martin MN, et al. RHarsh environments: space radiation. Johns Hopkins APL Techn Dig. 2008;28(1):17.
  • Kiesbye J, Messmann D, Preisinger M, et al. Hardware-in-the-loop and software-in-the-loop testing of the move-ii cubesat. Aerospace. 2019;6(12):130.