Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 64, 2023 - Issue 3
1,228
Views
0
CrossRef citations to date
0
Altmetric
Regular Papers

Adaptive sliding mode based fault tolerant control of wheeled mobile robots

ORCID Icon & ORCID Icon
Pages 467-483 | Received 19 Sep 2021, Accepted 08 Mar 2023, Published online: 18 Mar 2023

References

  • Parisa Y, Meskin N. Design and real-time implementation of actuator fault-tolerant control for differential-drive mobile robots based on multiple-model approach. Proc Inst Mech Eng. 2018;232(6):652–661.
  • Li D, Ye J. Adaptive robust control of wheeled mobile robot with uncertainties. In Advanced Motion Control (AMC), 2014 IEEE 13th International Workshop on, pp. 518–523, 2014.
  • Laumond J-P. Robot motion planning and control, Vol. 229. New York: Springer; 1998.
  • Kanayama Y, Kimura Y, Miyazaki F, et al. A stable tracking control method for an autonomous mobile robot. In Robotics and Automation, 1990. Proceedings. 1990 IEEE International Conference on, pp. 384–389, 1990.
  • Mevo BB, Saad MR, Fareh R. Adaptive sliding mode control of wheeled mobile robot with nonlinear model and uncertainties. In Electrical and Computer Engineering, IEEE Canadian Conference on, pp. 1–5, 2018.
  • Koubaa Y, Boukattaya M, Dammak T. Adaptive sliding-mode dynamic control for path tracking of nonholonomic wheeled mobile robot. J Autom Syst Eng. 2015;9:119–131.
  • Baek J, Kwon W. Practical adaptive sliding-mode control approach for precise tracking of robot manipulators. Appl Sci. 2020;10(8):2909.
  • Jin XZ, Zhao YX, Wang H, et al. Adaptive fault-tolerant control of mobile robots with actuator faults and unknown parameters. IET Control Theory Applic. 2019;13(11):1665–1672.
  • Ma Y, Cocquempot V, El Najjar MEB, et al. Fault-tolerant control for physically linked two 2WD mobile robots with actuator faults. IFAC-PapersOnLine. 2017;50(1):13563–13568.
  • Moradi M, Fekih A. A stability guaranteed robust fault tolerant control design for vehicle suspension systems subject to actuator faults and disturbances. IEEE Trans Control Syst Technol. 2014;23(3):1164–1171.
  • Zhang D, Liu G, Zhou H, et al. Adaptive sliding mode fault-tolerant coordination control for four-wheel independently driven electric vehicles. IEEE Trans Ind Electron. 2018;65(11):9090–9100.
  • Kamel MA, Zhang Y, Yu X. Fault-tolerant cooperative control of multiple wheeled mobile robots under actuator faults. IFAC-PapersOnLine. 2015;48(21):1152–1157.
  • Zhang X, Cocquempot V. Fault tolerant control for an electric 4WD vehicle's path tracking with active fault diagnosis. IFAC Proc Vol. 2014;47(3):6728–6734.
  • Karras GC, Fourlas GK. Model predictive fault tolerant control for omni-directional mobile robots. J Intell Robot Syst. 2020;97(3):635–655.
  • Mohareri O. Mobile robot trajectory tracking using neural networks. Degree of Master of Science in Mechatronics Engineering. Sharjah: American University of Sharjah; 2009.
  • Alshorman AM, Alshorman O, Irfan M, et al. Fuzzy-based fault-tolerant control for omnidirectional mobile robot. Machines. 2020;8(3):55.
  • Liu Q, Cong Q. Kinematic and dynamic control model of wheeled mobile robot under internet of things and neural network. J Supercomput. 2022;78(6):8678–8707.
  • Jin X. Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints. Automatica (Oxf). 2018;94:63–71.
  • Yoo SJ, Kim TH. Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults. Automatica (Oxf). 2017;77:380–387.
  • Lewis FL, Abdallah CT, Dawson DM. Control of robot manipulators. Editorial Maxwell McMillan, Canada, pp. 25–36, 1993.
  • Demirbaş F, Kalyoncu M. Differential drive mobile robot trajectory tracking with using PID and kinematic based backstepping controller. Selcuk Univ J Eng Sci Technol. 2017;5(1):1–15.
  • Ayyıldız M, Tilki U. "Adaptive sliding mode control of mobile robot and comparison with PID controller," Internatıonal Symposıum on Applıed Scıences and Engıneerıng (ISASE), 7–9 April, pp. 494–498, 2021.
  • Raj L, Czmerk A. Modelling and simulation of the drivetrain of an omnidirectional mobile robot. Automatika: Časopis za Automatiku, Mjerenje, Elektroniku, Računarstvo i Komunikacije. 2017;58(2):232–243.
  • Hanna DK, Joukhadar A. A novel control-navigation system-based adaptive optimal controller and EKF localization of DDMR. Int J Adv Res Artif Intell. 2015;4(5):21–29.
  • Contreras JCM, Herrera D, Toibero JM, et al. Controllers design for differential drive mobile robots based on extended kinematic modeling. European Conference on Mobile Robots (ECMR). IEEE, 2017.
  • Lamraoui HC, Qidan Z, Benrabah A. Dynamic velocity tracking control of differential-drive mobile robot based on LADRC. In International Conference on Real-time Computing and Robotics (RCAR), pp. 633–638, IEEE, 2017.
  • Dhaouadi R, Hatab AA. Dynamic modelling of differential-drive mobile robots using Lagrange and newton-Euler methodologies: a unified framework. Adv Robot Automat. 2013;2:1–7.
  • Bouzoualegh S, Guechi E-H, Kelaiaia R. Model predictive control of a differential-drive mobile robot. Electr Mech Eng. 2018;10:20–41.
  • Fierro R, Lewis FL. Control of a nonholomic mobile robot: backstepping kinematics into dynamics. J Robot Syst. 1997;14(3):149–163.
  • Ye J. Tracking control for nonholonomic mobile robots: integrating the analog neural network into the backstepping technique. Neurocomputing. 2008;71(16-18):3373–3378.
  • Fierro R, Lewis FL. Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Netw. 1998;9(4):589–600.
  • Velagic J, Osmic N, Lacevic B. Neural network controller for mobile robot motion control, World Academy of Science. Eng Technol. 2008;47:193–198.
  • Qian D, Tong S, Xu C. Robust multi-robot formations via sliding mode controller and fuzzy compensator. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije. 2016;57(4):1007–1019.
  • Liu J. Sliding mode control using MATLAB. Beijing: Academic Press; 2017.
  • Xu L, Yao B. Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation. Int J Control. 2007;81(2):167–176.
  • Sastry S, Bodson M. Adaptive control: stability, convergence, and robustness. Mineola, NY: Courier Corporation; 2011.
  • Ranjbar E, Yaghubi M, Suratgar AA. Robust adaptive sliding mode control of a MEMS tunable capacitor based on dead-zone method. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije. 2020;61(4):587–601.
  • Barsan A. Position control of a mobile robot through PID controller. Acta Universitatis Cibiniensis, Technical Series. 2019;71:14–20.
  • Amer AF, Sallam EA, Sultan IA. Adaptive sliding-mode dynamic controller for nonholonomic mobile robots. In 12th International Computer Engineering Conference (ICENCO). IEEE, 2016.
  • Al-dujaili A, Cocquempot V, Najjar M, et al. Actuator fault compensation tracking control for multi linked 2WD mobile robots. In 25th Mediterranean Conference on Control and Automation (MED), IEEE, 2017.
  • Srebro A. A self-tuning fuzzy PD controller for a wheeled mobile robot operating in the presence of faults. Challenges of Modern Technology. 2011;2(4):11–21.
  • Ayyıldız M, Tilki U. Fault Tolerant Control of Wheeled Mobile Sliding Mode Controller. In 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), 2021, pp. 1–6. DOI:10.1109/INISTA52262.2021.9548505