Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 65, 2024 - Issue 3
149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advanced gate driving concepts and switching optimization for SiC semiconductors

, , &
Pages 1300-1314 | Received 14 Feb 2024, Accepted 26 May 2024, Published online: 25 Jun 2024

References

  • Oswald N, Anthony P, McNeill N, et al. An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched All-Si, Si-SiC, and All-SiC device combinations. IEEE Trans Power Electron. 2014;29(5):2393–2407. doi: 10.1109/TPEL.2013.2278919
  • Haider M, Fuchs S, Zulauf G, et al. Analytical loss model for three-phase 1200 V SiC MOSFET inverter drive system utilizing Miller capacitor-based dv/dt-limitation. IEEE Open J Power Electron. 2022;3:93–104. doi: 10.1109/OJPEL.2022.3143995
  • Ivaniš T, Kovačić M. An overview of advanced gate driver concepts for SiC semiconductors. In: 2023 International Conference on Electrical Drives and Power Electronics (EDPE). Slovakia: The High Tatras; 2023. p. 1–9.
  • Hegarty T. Texas instruments, The engineer's guide To EMI In DC-DC converters (Part 3): understanding power stage parasitics. Application note; March 2018.
  • Kovacevic-Badstuebner I, Stark R, Grossner U, et al. Parasitic extraction procedures for SiC power modules. In: CIPS 2018; 10th International Conference on Integrated Power Electronics Systems. Stuttgart, Germany; 2018. p. 1–6.
  • Liu S, Song S, Xie N, et al. Miller Plateau corrected with displacement currents and its use in analyzing the switching process and switching loss. Electronics. 2021;10:2013. doi: 10.3390/electronics10162013
  • Wu Y, Li H, Li C, et al. Analytical modeling of SiC MOSFET during switching transient. In: 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). Singapore; 2018. p. 1187–1192.
  • Acharya S, She X, Tao F, et al. Active gate driver for SiC-MOSFET-based PV inverter with enhanced operating range. IEEE Trans Ind Appl. 2019;55(2):1677–1689. doi: 10.1109/TIA.2018.2878764
  • Kasper M, Burkart RM, Deboy G, et al. ZVS of power MOSFETs revisited. IEEE Trans Power Electron. 2016;31(12):8063–8067.
  • Nayak P, Hatua K. Modeling of switching behavior of 1200 V SiC MOSFET in presence of layout parasitic inductance. In: 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Trivandrum; 2016. p. 1–6.
  • Hegarty T. Texas instruments, The engineer's guide to EMI in DC-DC converters (Part 2): noise propagation and filtering. Application note; January 2018.
  • Oswald N, Stark BH, Holliday D, et al. Analysis of shaped pulse transitions in power electronic switching waveforms for reduced EMI generation. IEEE Trans Ind Appl. 2011;47(5):2154–2165. doi: 10.1109/TIA.2011.2161971
  • Peftitsis D, Rabkowski J. Gate and base drivers for silicon carbide power transistors: an overview. IEEE Trans Power Electron. 2016;31(10):7194–7213.
  • Zhang Z, Dix J, Wang FF, et al. Intelligent gate drive for fast switching and crosstalk suppression of SiC devices. IEEE Trans Power Electron. 2017;32(12):9319–9332. doi: 10.1109/TPEL.2017.2655496
  • Yang Y, Wen Y, Gao Y. A novel active gate driver for improving switching performance of high-power SiC MOSFET modules. IEEE Trans Power Electron. 2019;34(8):7775–7787. doi: 10.1109/TPEL.63
  • Zhao S, Dearien A, Wu Y, et al. Adaptive multi-level active gate drivers for SiC power devices. IEEE Trans Power Electron. 2020;35(2):1882–1898. doi: 10.1109/TPEL.63
  • Philipps DA, Xue P, Ubostad TN, et al. Low inductive characterization of fast-switching SiC MOSFETs and active gate driver units. IEEE Trans Ind Appl. 2023;59(5):6384–6398. doi: 10.1109/TIA.2023.3282930
  • Nayak P, Hatua K. Active gate driving technique for a 1200 V SiC MOSFET to minimize detrimental effects of parasitic inductance in the converter layout. IEEE Trans Ind Appl. 2018;54(2):1622–1633. doi: 10.1109/TIA.2017.2780175
  • Camacho AP, Sala V, Ghorbani H, et al. A novel active gate driver for improving SiC MOSFET switching trajectory. IEEE Trans Ind Electron. 2017;64(11):9032–9042. doi: 10.1109/TIE.2017.2719603
  • Krishna MV, Hatua K. An easily implementable gate charge controlled active gate driver for SiC MOSFET. In: IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society. Washington (DC); 2018. p. 999–1004.
  • Yamaguchi K, Katsura K, Yamada T, et al. Comprehensive study on gate driver for SiC-MOSFETs with gate boost. IEEJ J Ind Appl. 2018;7(3):218–228. Online ISSN 2187-1108, Print ISSN 2187–1094.
  • Niu H, Lorenz RD. The effect of gate drive topology on online silicon carbide MOSFET junction temperature sensing. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE). Montreal (QC); 2015. p. 7015–7022.
  • Anthony P, McNeill N, Holliday D. High-speed resonant gate driver with controlled peak gate voltage for silicon carbide MOSFETs. IEEE Trans Ind Appl. 2014;50(1):573–583. doi: 10.1109/TIA.28
  • Pilli NK, Chauhan AK, Singh SK, et al. An inductor-less, discontinuous current source gate driver for SiC devices. IEEE Access. 2019;7:34227–34237. doi: 10.1109/Access.6287639
  • Rødal GL, Peftitsis D. An adaptive current-source gate driver for high-voltage SiC mosfets. IEEE Trans Power Electron. 2023;38(2):1732–1746. doi: 10.1109/TPEL.2022.3208827
  • Lobsiger Y, Kolar JW. Closed-loop di/dt and dv/dt IGBT gate driver. IEEE Trans Power Electron. 2014;30(6):3402–3417. doi: 10.1109/TPEL.2014.2332811
  • Dang L, Kuhn H, Mertens A. Digital adaptive driving strategies for high-voltage IGBTs. In: 2011 IEEE Energy Conversion Congress and Exposition. Phoenix (AZ); 2011. p. 2993–299.
  • Cheng YS, Mannen T, Wada K, et al. Optimization platform to find a switching pattern of digital active gate drive for reducing both switching loss and surge voltage. IEEE Trans Ind Appl. 2019;55(5):5023–5031. doi: 10.1109/TIA.28
  • Cheng YS, Yamaguchi D, Mannen T, et al. High-speed searching of optimum switching pattern for digital active gate drive to adapt to various load conditions. IEEE Trans Ind Electron. 2022;69(5):5185–5194. doi: 10.1109/TIE.2021.3084169
  • Du X, Wei Y, Stratta A, et al. A four-level active gate driver with continuously adjustable intermediate gate voltages. In: 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). Houston (TX), USA; 2022. p. 1379–1386.
  • Wiesemann J, Dumtzlaff J, Mertens A. Control of an active gate driver for an electric vehicle traction inverter using artificial neural networks. In: 2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe). Hanover, Germany; 2022. p. 1–10.
  • Patmanidis K, Kist T, Glavanovics M, et al. Configurable gate driver for a stress test bench of newly developed discrete silicon power devices. Microelectron Reliab. 2021;124:Article ID 114283. doi: 10.1016/j.microrel.2021.114283
  • Christen D, Biela J. Analytical switching loss modeling based on datasheet parameters for mosfets in a half-bridge. IEEE Trans Power Electron. 2019;34(4):3700–3710. doi: 10.1109/TPEL.2018.2851068
  • Velander E, Bohlin G, Sandberg Å, et al. An ultralow loss inductorless dv/dt filter concept for medium-power voltage source motor drive converters with SiC devices. IEEE Trans Power Electron. 2018;33(7):6072–6081. doi: 10.1109/TPEL.63
  • Bendicks A, Dörlemann T, Krause C, et al. MATLAB/Octave function to evaluate time-domain signals according to the measurement bandwidth and average/peak detector of EMI test receivers. In: Proceedings Conference on Electromagnetic Compatibility. Cologne, Germany; 12–14 July 2022.