Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 65, 2024 - Issue 3
211
Views
0
CrossRef citations to date
0
Altmetric
Regular Paper

Two-stage deep learning classification for diabetic retinopathy using gradient weighted class activation mapping

, ORCID Icon, &
Pages 1284-1299 | Received 14 Feb 2024, Accepted 28 May 2024, Published online: 27 Jun 2024

References

  • Wild S, Roglic G, Green A, et al. Global prevalence of diabetes. Diab Care. 2004;27(5):1047–1053. doi: 10.2337/diacare.27.5.1047
  • Karthik M, Sohier D. APTOS 2019 Blindness Detection. Kaggle. 2019. https://kaggle.com/competitions/aptos2019-blindness-detection
  • Abbas Q, Qureshi I, Ibrahim ME. An automatic detection and classification system of five stages for hypertensive retinopathy using semantic and instance segmentation in DenseNet architecture. Sensors. 2021;21(20):6936. doi: 10.3390/s21206936
  • Asiri N, Hussain M, Al Adel F, et al. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey. Artif Intell Med. 2019;99:101701. doi: 10.1016/j.artmed.2019.07.009
  • Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Venice. 2017 IEEE International Conference on Computer Vision (ICCV). 2017. p. 618-626.
  • Khalifa NEM, Loey M, Taha MHN, et al. Deep transfer learning models for medical diabetic retinopathy detection. Acta Inf Med. 2019;27(5):327. doi: 10.5455/aim.
  • Dekhil O, Naglah A, Shaban M, et al. Deep learning based method for computer aided diagnosis of diabetic retinopathy. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi: 2019. p. 1–4.
  • Kassani SH, Kassani PH, Khazaeinezhad R, et al. Diabetic retinopathy classification using a modified xception architecture. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); 2019. p. 1–6.
  • Tymchenko B, Marchenko P, Spodarets D. Deep learning approach to diabetic retinopathy detection; 2020. arXiv preprint arXiv:2003.02261.
  • Qureshi I, Ma J, Abbas Q. Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning. Multimed Tools Appl. 2021;80(8):11691–11721. doi: 10.1007/s11042-020-10238-4
  • Zeng X, Chen H, Luo Y, et al. Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access. 2019;7:30744–30753. doi: 10.1109/ACCESS.2019.2903171
  • Shanthi T, Sabeenian R. Modified Alexnet architecture for classification of diabetic retinopathy images. Comput Electr Eng. 2019;76:56–64. doi: 10.1016/j.compeleceng.2019.03.004
  • Decencière E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol. 2014;33(3):231–234. doi: 10.5566/ias.1155
  • Abbas Q, Ibrahim ME, Baig AR. Transfer learning-based computer-aided diagnosis system for predicting grades of diabetic retinopathy. Comput Mater Contin. 2022;71(3):4573–4590.
  • Jain A, Jalui A, Jasani J, et al. Deep learning for detection and severity classification of diabetic retinopathy. In: 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). Chennai: IEEE; 2019. p. 1–6.
  • Hagos MT, Kant S. Transfer learning based detection of diabetic retinopathy from small dataset; 2019. arXiv preprint arXiv:1905.07203.
  • Quellec G, Charriere K, Boudi Y, et al. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017;39:178–193. doi: 10.1016/j.media.2017.04.012
  • Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962–969. doi: 10.1016/j.ophtha.2017.02.008
  • Shakibania H, Raoufi S, Pourafkham B, et al. Dual branch deep learning network for detection and stage grading of diabetic retinopathy. Biomed Signal Process Control. 2024;93:106168. doi: 10.1016/j.bspc.2024.106168
  • Wang Z, Yin Y, Shi J, et al. Zoom-in-net: deep mining lesions for diabetic retinopathy detection. In: Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11–13, 2017, Proceedings, Part III 20. Springer; 2017. p. 267–275.
  • Zhao Z, Zhang K, Hao X, et al. Bira-net: bilinear attention net for diabetic retinopathy grading. In: 2019 IEEE International Conference on Image Processing (ICIP). Taipei: IEEE; 2019. p. 1385–1389.
  • Madarapu S, Ari S, Mahapatra K. A deep integrative approach for diabetic retinopathy classification with synergistic channel-spatial and self-attention mechanism. Expert Syst Appl. 2024;249:123523. doi: 10.1016/j.eswa.2024.123523
  • Narayanan BN, Hardie RC, De Silva MS, et al. Hybrid machine learning architecture for automated detection and grading of retinal images for diabetic retinopathy. J Med Imaging. 2020;7(3):034501–034501. doi: 10.1117/1.JMI.7.3.034501
  • Majumder S, Elloumi Y, Akil M, et al. A deep learning-based smartphone app for real-time detection of five stages of diabetic retinopathy. In: Real-time image processing and deep learning 2020. Vol. 11401, SPIE; 2020. p. 13–22. doi: 10.1117/12.2557554
  • Shaban M, Ogur Z, Mahmoud A, et al. A convolutional neural network for the screening and staging of diabetic retinopathy. PLoS ONE. 2020;15(6):e0233514. doi: 10.1371/journal.pone.0233514
  • Gangwar AK, Ravi V. Diabetic retinopathy detection using transfer learning and deep learning. In: Evolution in computational intelligence: frontiers in intelligent computing: theory and applications (FICTA 2020). Vol. 1, Surathkal: Springer Singapore; 2021. p. 679–689. doi: 10.1007/978-981-15-5788-0_64
  • Ramchandre S, Patil B, Pharande S, et al. A deep learning approach for diabetic retinopathy detection using transfer learning. In: 2020 IEEE International Conference for Innovation in Technology (INOCON). Bangalore: IEEE; 2020. p. 1–5.
  • Nahiduzzaman M, Islam MR, Goni MOF, et al. Diabetic retinopathy identification using parallel convolutional neural network based feature extractor and elm classifier. Expert Syst Appl. 2023;217:119557. doi: 10.1016/j.eswa.2023.119557
  • Islam MR, Abdulrazak LF, Nahiduzzaman M, et al. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Comput Biol Med. 2022;146:105602. doi: 10.1016/j.compbiomed.2022.105602
  • Jian M, Chen H, Tao C, et al. Triple-DRNet: a triple-cascade convolution neural network for diabetic retinopathy grading using fundus images. Comput Biol Med. 2023;155:106631. doi: 10.1016/j.compbiomed.2023.106631
  • Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: 2017. p. 4700–4708.
  • Garg B, Sharma G. A quality-aware energy-scalable gaussian smoothing filter for image processing applications. Microprocess Microsyst. 2016;45:1–9. doi: 10.1016/j.micpro.2016.02.012
  • Selvakumar V, Akila C. Efficient diabetic retinopathy diagnosis through U-Net – KNN integration in retinal fundus images. Automatika. 2023;64(4):1148–1157. doi: 10.1080/00051144.2023.2251231