Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 65, 2024 - Issue 4
151
Views
0
CrossRef citations to date
0
Altmetric
Regular Paper

SwinVNETR: Swin V-net Transformer with non-local block for volumetric MRI Brain Tumor Segmentation

&
Pages 1350-1363 | Received 02 Dec 2023, Accepted 18 Jun 2024, Published online: 09 Jul 2024

References

  • https://www.cancerresearchuk.org/about-cancer/brain-tumours/types.
  • https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors.
  • https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084.
  • Zhao X, Wu Y, Song G, et al. 3D brain tumor segmentation through integrating multiple 2D FCNNs. In Brainlesion: Glioma, Multiple Sclerosis, Stroke, and Traumatic Brain Injuries: Third International Workshop, BrainLes 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Revised Selected Papers 3, pp. 191–203. Springer International Publishing, 2018.
  • Torheim T, Malinen E, Kvaal K, et al. Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. IEEE Trans Med Imaging. 2014;33(8). doi:10.1109/TMI.2014.2321024
  • Baid U, Ghodasara S, Mohan S, et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification.” arXiv preprint arXiv:2107.02314; 2021.
  • Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pp. 818-833. Springer International Publishing. 2014.
  • Qian J, Li H, Wang J, et al. Recent advances in explainable artificial intelligence for magnetic resonance imaging. Diagnostics. 2023;13(9):1571. doi:10.3390/diagnostics13091571
  • Chen W, Qiao X, Liu B, et al. Automatic brain tumor segmentation based on features of separated local square. In 2017, the Chinese Automation Congress (CAC), pp. 6489–6493. IEEE, 2017.
  • Liu Z, Tong L, Chen L, et al. Deep learning based brain tumor segmentation: a survey. Complex Intell Syst. 2023;9(1):1001–1026. doi:10.1007/s40747-022-00815-5
  • Mzoughi H, Njeh I, Slima MB, et al. Glioblastomas brain Tumor Segmentation using Optimized U-Net based on Deep Fully Convolutional Networks (D-FCNs). In 2020, the 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 1–6. IEEE, 2020.
  • Ranjbarzadeh R, Bagherian Kasgari A, Ghoushchi SJ, et al. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep. 2021;11(1). doi:10.1038/s41598-021-90428-8
  • Mlynarski P, Delingette H, Criminisi A, et al. 3D convolutional neural networks for tumor segmentation using long-range 2D context. Comput Med Imaging Graph. 2019;73. doi:10.1016/j.compmedimag.2019.02.001
  • Biratu ES, Schwenker F, Megersa Ayano Y, et al. A survey of brain tumor segmentation and classification algorithms. J Imaging. 2021;7(9). doi:10.3390/jimaging7090179
  • Mzoughi H, Njeh I, Wali A, et al. Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification. J Digit Imaging. 2020;33. doi:10.1007/s10278-020-00347-9
  • Nian R, Zhang G, Sui Y, et al. 3D Brainformer: 3D Fusion Transformer for Brain Tumor Segmentation.” arXiv preprint arXiv:2304.14508; 2023).
  • Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing. 2015.
  • Gitonga MM. Multiclass MRI Brain Tumor Segmentation using 3D Attention-based U-Net. arXiv preprint arXiv:2305.06203; 2023.
  • Nodirov J, Abdusalomov AB, Whangbo TK. Attention 3D U-Net with multiple skip connections for segmentation of brain tumor images. Sensors. 2022;22(17):6501–6501. doi:10.3390/s22176501
  • Chen Y, Yin M, Li Y, et al. CSU-Net: A CNN-Transformer parallel network for multimodal brain tumour segmentation. Electronics. 2022;11(14):2226. doi:10.3390/electronics11142226
  • Zerilli J. Explaining machine learning decisions. Philos Sci. 2022;89:1–19. doi:10.1017/psa.2021.13
  • Wang X, Girshick R, Gupta A, et al. Non-local neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794-7803. 2018.
  • Baid U, Ghodasara S, Mohan S, et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314; 2021.
  • Bakas S, Akbari H, Sotiras A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data. 2017;4(1). doi:10.1038/sdata.2017.117
  • Yushkevich PA, Piven J, Cody Hazlett H, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–1128.
  • Selvaraju RR, Das A, Vedantam R, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int J Comput Vision. 2016;128:336–359. doi:10.1007/s11263-019-01228-7
  • Zhao J, Meng Z, Wei L, et al. Supervised brain tumor segmentation based on gradient and context-sensitive features. Front Neurosci. 2019;13:1–11.
  • Mengqiao W, Jie Y, Yilei C, et al. The multimodal brain tumor image segmentation based on convolutional neural networks.” In 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 336–339. IEEE, 2017.
  • Lorenzo PR, Nalepa J, Bobek-Billewicz B, et al. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks. Comput Methods Programs Biomed. 2019;176:135–148.
  • Jia J, Fang F, Luo H. Selective spatial attention involves two alpha-band components associated with distinct spatiotemporal and functional characteristics. NeuroImage. 2019;199:228–236.
  • Li X, Zhong Z, Wu J, et al. Expectation- maximization attention networks for semantic segmenta- tion. CoRR, vol. abs/1907.13426, 2019.
  • Ge C, Gu IY-H, Jakola AS, et al. Enlarged training dataset by pairwise GANs for molecular-based brain tumor classification. IEEE Access. 2020;8:22560–22570.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. 2016.
  • Xu F, Jiang L, He W, et al. The clinical value of explainable deep learning for diagnosing fungal keratitis using in vivo confocal microscopy images. Front Med (Lausanne). 2021;8:1–10.
  • Främling K. Decision Theory Meets Explainable AI. Explainable, Transparent Auton Agents Multi-Agent Syst. 2020;12175:57–74. doi:10.1007/978-3-030-51924-7_4
  • Mortamet B, Bernstein M, Jack C, et al. Automatic quality assessment in structural brain magnetic resonance imaging. Magn Reson Med. 2009;62. doi:10.1002/mrm.21992
  • Joo H-T, Kim K-J. Visualization of Deep Reinforcement Learning using Grad-CAM: How AI Plays Atari Games?. In Proceedings of the IEEE Conference on Games (CoG), pp. 1–2. 2019. doi:10.1109/CIG.2019.8847950
  • Selvaraju RR, Das A, Vedantam R, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int J Comput Vision. 2016;128:336–359. doi:10.1007/s11263-019-01228-7
  • Zhao G, Zhou B, Wang K, et al. Respond-CAM: Analyzing Deep Models for 3D Imaging Data by Visualizations.” (2018): 485–492.
  • Baid U, et al. The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. arXiv:2107.02314; 2021.
  • Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging. 2015;34(10):1993–2024. doi:10.1109/TMI.2014.2377694
  • Bakas S, Akbari H, Sotiras A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Sci Data. 2017;4:170117. doi:10.1038/sdata.2017.117