755
Views
57
CrossRef citations to date
0
Altmetric
Nutrition & Metabolism

An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers

, , , , &
Pages 738-746 | Accepted 28 Jun 2013, Published online: 08 Jan 2014

REFERENCES

  • AOAC. (1995) Official Methods of Analysis, 16th edn (Gaithersburg, MD, Association of Official Analytical Chemist).
  • Bao, H., She, R., Liu, T., Zhang, Y., Peng, K.S., Luo, D., Yue, Z., Ding, Y., Hu, Y., Liu, W. & Zhai, L. (2009) Effects of pig antimicrobial peptides on growth performance and intestine mucosal immune of broiler chickens. Poultry Science, 88: 291–297.
  • Bradshaw, J.P. (2003) Cationic antimicrobial peptides: issues for potential clinical use. Bio Drugs, 17: 233–240.
  • Caspary, W.F. (1992) Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition, 55: 299–308.
  • Dathe, M., Nikolenko, H., Meyer, J., Beyermann, M. & Bienert, M. (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Letter, 501: 146–150.
  • Denev, S.A. (2006) Effects of different growth promoters on the caecal microflora and performance of broiler chickens. Bulgarian Journal of Agriculture Science, 12: 461–474.
  • Fan, Y., Croom, J., Christensen, V., Black, B., Bird, A., Daniel, L., Mcbride, B. & Eisen, E. (1997) Jejunal glucose uptake and oxygen consumption in turkey poults selected for rapid growth. Poultry Science, 76: 1738–1745.
  • Fenton, T.W. & Fenton, M. (1979) An improved method for chromic oxide determination in feed and feces. Canadian Journal of Animal Science, 59: 631–634.
  • Greiner, L.L., Stahly, T.S. & Stanton, T. (2004) Efficacy of antimicrobial peptide precursors as an antibiotic alternative. Iowa State University. Available: http://www.pork.org/PorkScience/Documents/ABSTRACT%2004-00-060-Stahly-ISU. Accessed 15 Feb. 2007. 
  • Hancock, R.E. & Lehrer, R.I. (1998) Cationic peptides: a new source of antibiotics. Trends in Biotechnology, 16: 82–88.
  • Huang, H.W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry, 39: 8347–8352.
  • Javadpour, M.M., Juban, M.M., Lo, W.C., Bishop, S.M., Alberty, J.B., Cowell, S.M., Becker, C.L. & Mclaughlin, M.L. (1996) De novo antimicrobial peptides with low mammalian cell toxicity. Journal of Medicinal Chemistry, 39: 3107–3113.
  • Jin, Z., Shinde, P.L., Yang, Y.X., Choi, J.Y., Yoon, S.Y., Hahn, T.W., Lim, H.T., Park, Y.K., Hahm, K.S., Joo, J.W. & Chae, B.J. (2008) Potato (Solanum tuberosum L. cv. Golden valley) protein as a novel antimicrobial agent in weanling pigs. Journal of Animal Science, 86: 1562–1572.
  • Jin, Z., Shinde, P.L., Yang, Y.X., Choi, J.Y., Yoon, S.Y., Hahn, T.W., Lim, H.T., Park, Y.K., Hahm, K.S., Joo, J.W. & Chae, B.J. (2009) Use of refined potato (Solanum tuberosum L. cv. Gogu valley) protein as an alternative to antibiotics in weanling pigs. Livestock Science, 124: 26–32.
  • Keymanesh, K., Soltani, S. & Sardari, S. (2009) Application of antimicrobial peptides in agriculture and food industry. World Journal of Microbiology and Biotechnology, 25: 933–944.
  • Lee, D.G., Kim, H.N., Park, Y., Kim, H.K., Choi, B.H., Choi, C.H. & Hahm, K.S. (2002) Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochimica et biophysica acta, 1598: 185–194.
  • Liu, T., She, R., Wang, K., Bao, H., Zang, Y., Luo, D., Hu, Y., Ding, Y., Wang, D. & Peng, K. (2008) Effect of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chicken. Poultry Science, 87: 250–254.
  • Ma, W.M., She, R.P., Peng, F.Z., Jin, H. & Hu, Y.X. (2004) The preparation and partial characterization of an antimicrobial peptide from the small intestine of pig. Science Technology Engineering, 4: 202–205.
  • Mallet, S., Delord, P., Juin, H. & Lessire, M. (2005) Effect of in feed talc supplementation on broiler performance. Animal Research, 54: 485–492.
  • Maloy, W.L. & Kari, U.P. (1995) Structure–activity studies on magainins and other host defense peptides. Biopolymers, 37: 105–122.
  • Marr, A.K., Gooderham, W.J. & Hancock, R.E. (2006) Antimicrobial peptides for therapeutic use: obstacles and realistic outlook. Current Opinion in Pharmacology, 6: 468–472.
  • Matsuzaki, K. (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochimica et biophysica acta, 1462: 1–10.
  • Merrifield, R.B. (1986) Solid phase synthesis. Science, 232: 341–347.
  • Miles, R.D., Butcher, G.D., Henry, P.R. & Littell, R.C. (2006) Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poultry Science, 85: 476–485.
  • Mountzouris, K.C., Tsirtsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G. & Fegeros, K. (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and caecal microflora composition. Poultry Science, 89: 58–67.
  • NRC. (1994) Nutrient Requirement of Poultry, 9th edn (Washington, DC, National Academy Press).
  • Oh, D., Shin, S.Y., Lee, S., Kang, J.H., Kim, S.D., Ryu, P.D., Hahm, K.-S. & Kim, Y. (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A (1–8)-magainin 2(1–12) and its analogues, on their antibiotic activities and structures. Biochemistry, 39: 11855–11864.
  • Ohh, S.H., Shinde, P.L., Choi, J.Y., Jin, Z., Hahn, T.W., Lim, H.T., Kim, G.Y., Park, Y.K., Hahm, K.S. & Chae, B.J. (2009) Potato (Solanum tuberosum L. cv. golden valley) protein as an antimicrobial agent in diets of broilers. Poultry Science, 88: 1227–1234.
  • Ohh, S.H., Shinde, P.L., Choi, J.Y., Jin, Z., Hahn, T.W., Lim, H.T., Kim, G.Y., Park, Y.K., Hahm, K.S. & Chae, B.J. (2010) Effects of potato (Solanum tuberosum L. cv. golden valley) protein on performance, nutrient metabolizability, and caecal microflora in broilers. Archiv fur Geflügelkunde, 74: 30–35.
  • Samanya, M. & Yamauchi, K. (2002) Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comparative Biochemistry and Physiology, 133: 95–104.
  • Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et biophysica acta, 1462: 55–70.
  • Shan, T., Wang, Y., Wang, Y., Liu, J. & Xu, Z. (2007) Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets. Journal of Animal Science, 85: 2140–2146.
  • Shim, Y.H., Shinde, P.L., Choi, J.Y., Kim, J.S., Seo, D.K., Pak, J.I., Chae, B.J. & Kwon, I.K. (2010) Evaluation of multi-microbial probiotics produced by submerged liquid and solid substrate fermentation methods in broilers. Asian-Australasian Journal of Animal Sciences, 23: 521–529.
  • Shin, S.Y., Lee, M.K., Kim, K.L. & Hahm, K.S. (1997) Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. Journal of Peptide Research, 50: 279–285.
  • Tang, Z., Yin, Y., Zhang, Y., Huang, R., Sun, Z., Li, T., Chu, W., Kong, X., Li, L., Geng, M. & Tu, Q. (2009) Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. British Journal of Nutrition, 101: 998–1005.
  • Van Den Bogaard, A.E. & Stobberingh, E.E. (2000) Epidemiology of resistance to antibiotics links between animal and humans. International Journal of Antimicrobial Agents, 14: 327–335.
  • Wang, D., Ma, W., She, R., Sun, Q.U., Liu, Y., Hu, Y., Liu, L., Yang, Y. & Peng, K. (2009) Effects of swine gut antimicrobial peptides on the intestinal mucosal immunity in specific-pathogen-free chickens. Poultry Science, 88: 967–974.
  • Wang, Y.Z., Shan, T.Z., Xu, Z.R., Feng, J. & Wang, Z.Q. (2007) Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Animal Feed Science and Technology, 135: 263–272.
  • Yason, C.V., Summers, B.A. & Schat, K.A. (1987) Pathogenesis of rotavirus infection in various age groups of chickens and turkeys: pathology. American Journal of Veterinary Research, 6: 927–938.
  • Yoon, J.H., Ingale, S.L., Kim, J.S., Kim, K.H., Lee, S.H., Park, Y.K., Kwon, I.K. & Chae, B.J. (2012) Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and faecal microflora and intestinal morphology in weanling pigs. Animal Feed Science and Technology, 177: 98–107.
  • Zasloff, M. (2002) AMPs of multicellular organisms. Nature, 415: 389–395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.