131
Views
6
CrossRef citations to date
0
Altmetric
Physiology, Endocrinology & Reproduction

EDACO, a derivative of myricetin, inhibits the differentiation of Gaoyou duck embryonic osteoclasts in vitro

, , , , , , , , , , , , , & show all
Pages 169-175 | Received 31 Jul 2018, Accepted 20 Nov 2018, Published online: 18 Feb 2019

References

  • Dimas, K., C. Demetzos, D. Angelopoulou, A. Kolokouris, and T. Mavromoustakos. 2000. “Biological Activity of Myricetin and Its Derivatives against Human Leukemic Cell Lines in Vitro.” Pharmacological Research 42: 475–478. doi:10.1006/phrs.2000.0716.
  • Fan, S., X. Gao, P. Chen, and X. Li. 2018. “Myricetin Ameliorates Glucocorticoid-Induced Osteoporosis through the ERK Signaling Pathway.” Life Sciences 207: 205–211. doi:10.1016/j.lfs.2018.06.006.
  • Fleming, R. H., H. A. Mc Cormack, L. McTeir, and C. C. Whitehead. 2006. “Relationships between Genetic, Environmental and Nutritional Factors Influencing Osteoporosis in Laying Hens.” British Poultry Science 47: 742–755. doi:10.1080/00071660601077949.
  • Gay, C. V. 1991. “Avian Osteoclasts.” Calcified Tissue International 49: 153–154.
  • Hsu, Y. L., J. K. Chang, C. H. Tsai, T. T. Chien, and P. L. Kuo. 2007. “Myricetin Induces Human Osteoblast Differentiation through Bone Morphogenetic Protein-2/P38 Mitogen-Activated Protein Kinase Pathway.” Biochemical Pharmacology 73: 504–514. doi:10.1016/j.bcp.2006.10.020.
  • Huang, J., C. Wu, B. Tian, X. Zhou, N. Ma, and Y. Qian. 2016. “Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis.” International Journal of Molecular Sciences 17: 422. doi:10.3390/ijms17030422.
  • Kim, E. J., H. Lee, M. H. Kim, and W. M. Yang. 2018. “Inhibition of RANKL-stimulated Osteoclast Differentiation by Schisandra Chinensis through Down-Regulation of NFATc1 and C-Fos Expression.” BMC Complementary and Alternative Medicine 18: 270. doi:10.1186/s12906-018-2317-3.
  • Ko, S. Y. 2012. “Myricetin Suppresses LPS-induced MMP Expression in Human Gingival Fibroblasts and Inhibits Osteoclastogenesis by Downregulating NFATc1 in RANKL-induced RAW 264.7 Cells.” Archives of Oral Biology 57: 1623–1632. doi:10.1016/j.archoralbio.2012.06.012.
  • Kuo, P. L. 2005. “Myricetin Inhibits the Induction of anti-Fas IgM-, Tumor Necrosis Factor-A- and Interleukin-1h-Mediated Apoptosis by Fas Pathway Inhibition in Human Osteoblastic Cell Line MG-63.” Life Sciences 77: 2964–2976. doi:10.1016/j.lfs.2005.05.026.
  • Lee, J., N. M. G. Dieckmann, J. R. Edgar, G. M. Griffiths, and R. M. Siegel. 2018. “Fas Ligand Localizes to Intraluminal Vesicles within NK Cell Cytolytic Granules and Is Enriched at the Immune Synapse.” Immunity, Inflammation and Disease 6: 312–321. doi:10.1002/iid3.219.
  • Lee, K. H., and E. M. Choi. 2008. “Myricetin, a Naturally Occurring Flavonoid, Prevents 2-Deoxy-D-Ribose Induced Dysfunction and Oxidative Damage in Osteoblastic MC3T3-E1 Cells.” European Journal of Pharmacology 591: 1–6. doi:10.1016/j.ejphar.2008.06.004.
  • Ono, T., and T. Nakashima. 2018. “Recent Advances in Osteoclast Biology.” Histochemistry and Cell Biology 149: 325–341. doi:10.1007/s00418-018-1636-2.
  • Park-Min, K. H. 2018. “Mechanisms Involved in Normal and Pathological Osteoclastogenesis.” Cellular and Molecular Life Sciences 75: 2519–2528. doi:10.1007/s00018-018-2817-9.
  • Rößler, S., C. Heinemann, B. Kruppke, A. S. Wagner, S. Wenisch, H. P. Wiesmann, and T. Hanke. 2018. “Manipulation of Osteoclastogenesis: Bioactive Multiphasic Silica/Collagen Composites and Their Effects of Surface and Degradation Products.” Materials Science & Engineering. C, Materials for Biological Applications 93: 265–276. doi:10.1016/j.msec.2018.07.049.
  • Rucci, N., and A. Teti. 2016. “The“Love-Hate”Relationship between Osteoclasts and Bone Matrix.” Matrix Biology 52–54: 176–190. doi:10.1016/j.matbio.2016.02.009.
  • Sapkota, M., L. Li, S. W. Kim, and Y. Soh. 2018. “Thymol Inhibits RANKL-induced Osteoclastogenesis in RAW264.7 And BMM Cells and LPS-induced Bone Loss in Mice.” Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association 120: 418–429. doi:10.1016/j.fct.2018.07.032.
  • Takito, J., S. Inoue, and M. Nakamura. 2018. “The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone.” International Journal of Molecular Sciences 19: E984. doi:10.1016/j.tvjl.2014.02.004.
  • Tan, B., and Y. Yin. 2017. “Environmental Sustainability Analysis and Nutritional Strategies of Animal Production in China.” Annual Review Of Animal Biosciences 5: 171–184. doi:10.1146/annurev-animal-022516-022935.
  • Velali, E., E. Papachristou, A. Pantazaki, A. Besis, C. Samara, C. Labrianidis, and T. Lialiaris. 2018. “In Vitro Cellular Toxicity Induced by Extractable Organic Fractions of Particles Exhausted from Urban Combustion Sources - Role of PAHs.” Environmental Pollution 243: 1166–1176. doi:10.1016/j.envpol.2018.09.075.
  • Wang, Y., Y. X. Fu, J. H. Gu, Y. Yuan, X. Z. Liu, J. C. Bian, and Z. P. Liu. 2014. “Cadmium Induces the Differentiation Of Duck Embryonic Bone Marrow Cells into Osteoclasts in Vitro.” Veterinary Journal 200: 181–185. doi:10.1016/j.tvjl.2014.02.004.
  • Webster, A. B. 2004. “Welfare Implications of Avian Osteoporosis.” Poultry Science 83: 184–192. doi:10.1093/ps/83.2.184.
  • Whitehead, C. C., and R. H. Fleming. 2000. “Osteoporosis in Cage Layers.” Poultry Science 79: 1033–1041. doi:10.1093/ps/79.7.1033.
  • Wu, C., W. Wang, B. Tian, X. Liu, X. Qu, Z. Zhai, H. Li, et al. 2015. “Myricetin Prevents Titanium Particle-Induced Osteolysis in Vivo and Inhibits RANKL-induced Osteoclastogenesis in Vitro.” Biochemical Pharmacology 93: 59–71. doi:10.1016/j.bcp.2014.10.019.
  • Yamaguchi, M., R. Hamamoto, S. Uchiyama, and K. Ishiyama. 2007. “Effects of Flavonoid on Calcium Content in Femoral Tissue Culture and Parathyroid Hormone-Stimulated Osteoclastogenesis in Bone Marrow Culture in Vitro.” Molecular and Cellular Biochemistry 303: 83–88. doi:10.1007/s11010-007-9458-x.
  • Ying, X., X. Chen, Y. Feng, H. Z. Xu, H. Chen, K. Yu, S. Cheng, and L. Peng. 2014. “Myricetin Enhances Osteogenic Differentiation through the Activation of Canonical Wnt/β-catenin Signaling in Human Bone Marrow Stromal Cells.” European Journal of Pharmacology 738: 22–30. doi:10.1016/j.ejphar.2014.04.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.