173
Views
1
CrossRef citations to date
0
Altmetric
Genetics and Genomics

Polymorphic characterisation of gallinacin candidate genes and their molecular associations with growth and immunity traits in chickens

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 180-187 | Received 11 Apr 2020, Accepted 22 Sep 2020, Published online: 14 Dec 2020

References

  • Abdalhag, M. A., T. Zhang, Q. C. Fan, X. Q. Zhang, G. X. Zhang, J. Y. Wang, Y. Wei, and Y. J. Wang. 2015. “Single Nucleotide Polymorphisms Associated with Growth Traits in Jinghai Yellow Chickens.” Genetic Molecuar Research 14: 16169–16177. doi:10.4238/2015.December.8.6.
  • Ardiyana, M., A. Gunawan, S. Murtini, T. Sartika, and C. Sumantri. 2020. “Polymorphisms and Associations of the NRAMP-1 and iNOS Genes on Newcastle Disease and Salmonella Enteritidis Resistances in SenSi-1 Agrinak Chickens.” Tropical Animal Science Journal 43: 95–102. doi:10.5398/tasj.2020.43.2.95.
  • Ashraf, A., and M. S. El-Tarabany. 2015. “Association of Single Nucleotide Polymorphism in Bone Morphogenetic Protein Receptor 1B (BMPR-1B) Gene with Growth Traits in Chicken.” Kafkas Universitesi Veteriner Fakultesi Dergisi Journal 21: 819–824. Turkey.
  • Eltanany, M., U. Philipp, S. Weigend, and O. Distl. 2011. “Genetic Diversity of Ten Egyptian Chicken Strains Using 29 Microsatellite Markers.” Animal Genetics 42 (6): 666–669. doi:10.1111/j.1365-2052.2011.02185.x.
  • Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics. 4th ed. Essex, U.K.: Longman.
  • Gao, Y., R. Zhang, X. Hu, and N. Li. 2007. “Application of Genomic Technologies to the Improvement of Meat Quality of Farm Animals.” Meat Science 77 (1): 36–45. doi:10.1016/j.meatsci.2007.03.026.
  • Groeneveld, E. 2006. PEST User´s Manual. FAL, Germany: Institute of Animal Husbandry and Animal Behaviour.
  • Hasenstein, J. R., and S. J. Lamont. 2007. “Chicken Gallinacin Gene Cluster Associated with Salmonella Response in Advanced Intercross Line.” Avian Diseases 51 (2): 561–567. doi:10.1637/0005-2086(2007)51[561:CGGCAW]2.0.CO;2.
  • Hasenstein, J. R., G. Zhang, and S. J. Lamont. 2006. “Analyses of Five Gallinacin Genes and the Salmonella Enterica Serovar Enteritidis Response in Poultry.” Infection and Immunity 74 (6): 3375–3380. doi:10.1128/IAI.00027-06.
  • Herigstad, B., M. Hamilton, and J. Heersink. 2001. “How to Optimize the Drop Plate Method for Enumerating Bacteria.” Journal of Microbiological Methods 44 (2): 121–129. doi:10.1016/S0167-7012(00)00241-4.
  • Higgs, R., D. J. Lynn, S. Gaines, J. McMahon, J. Tierney, T. James, A. T. Lloyd, G. Mulcahy, and C. O’Farrelly. 2005. “The Synthetic Form of a Novel Chicken β-defensin Identified in Silico Is Predominantly Active against Intestinal Pathogens.” Immunogenetics 57 (1–2): 90–98. doi:10.1007/s00251-005-0777-3.
  • Jin, S., T. He, L. Yang, Y. Tong, X. Chen, and Z. Geng. 2018. “Association of Polymorphisms in Pit-1 Gene with Growth and Feed Efficiency in Meat-type Chickens.” Asian-Australasian Journal of Animal Sciences 31 (11): 1685–1690. doi:10.5713/ajas.18.0173.
  • Kaiser, M. G., and S. J. Lamont. 2001. “Genetic Line Differences in Survival and Pathogen Load in Young Layer Chicks after Salmonella Enterica Serovar Enteritidis Exposure.” Poultry Science 80 (8): 1105–1108. doi:10.1093/ps/80.8.1105.
  • Kalinowski, S. T., M. L. Taper, and T. C. Marshall. 2007. “Revising How the Computer Program CERVUS Accommodates Genotyping Error Increases Success in Paternity Assignment.” Molecular Ecology 16 (5): 1099–1106. doi:10.1111/j.1365-294X.2007.03089.x.
  • Kazemi, H., M. Najafi, E. Ghasemian, G. Rahimi-Mianji, and Z. A. Pirsaraei. 2018. “Polymorphism Detection of Promoter Region of IFN-γ and IL-2 and Their Association with Productive Traits in Mazandaran Native Breeder Fowls.” Journal of Genetics 97: 843–851. doi:10.1007/s12041-018-0981-1.
  • Khatab, S. A., S. A. Hemeda, A. F. El-Nahas, W. S. Abd, and E. Naby. 2017. “Polymorphisms of TLR4 Gene and Its Association with Genetic Resistance to Salmonella Enteritidis Infection in Fayoumi Breed and Hyline Strain in Egypt.” Alexandria Journal for Veterinary Sciences 55 (2): 1–9. doi:10.5455/ajvs.273717.
  • Kramer, J., M. Malek, and S. J. Lamont. 2003. “Association of Twelve Candidate Gene Polymorphisms and Response to Challenge with Salmonella Enteritidis in Poultry.” Animal Genetics 34 (5): 339–348. doi:10.1046/j.1365-2052.2003.01027.x.
  • Kulibaba, R. A., and A. P. Podstreshnyi. 2012. “Prolactin and Growth Hormone Gene Polymorphisms in Chicken Lines of Ukrainian Selection.” Cytology and Genetics 46 (6): 390–395. doi:10.3103/S0095452712060060.
  • Liu, L., Z. Cui, Q. Xiao, H. Zhang, X. Zhao, Y. Wang, H. Yin, D. Li, and Q. Zhu. 2018. “Polymorphisms in the Chicken Growth Differentiation Factor 9 Gene Associated with Reproductive Traits.” BioMed Research International 2018: 1-1. online. doi:10.1155/2018/4963834.
  • Malek, M., J. R. Hasenstein, and S. J. Lamont. 2004. “Analysis of Chicken TLR4, CD28, MIF, MD-2, and LITAF Genes in a Salmonella Enteritidis Resource Population.” Poultry Science 83 (4): 544–549. doi:10.1093/ps/83.4.544.
  • Mamutse, J., A. Gunawan, C. Sumantri, S. Murtini, and T. Sartika. 2018. “‘Association of the Toll-like Receptor 4 (TLR4) and Myxovirus (Mx) Genes with Resistance to Salmonella and Newcastle Disease in Selected Sentul Chickens.” Poultry Science 17: 591–599. doi:10.3923/ijps.2018.591.599.
  • Manjula, P., N. Choi, D. Seo, and J. H. Lee. 2018. ““POU Class 1 Homeobox 1 Gene Polymorphisms Associated with Growth Traits in Korean Native Chicken”.” Asian-Australasian Journal of Animal Sciences 31 (5): 643–649. doi:10.5713/ajas.17.0354.
  • Molee, A., K. Kongroi, P. Kuadsantia, C. Poompramun, and B. Likitdecharote. 2016. “Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens.” Asian-Australasian Journal of Animal Sciences 29 (1): 29–35. doi:10.5713/ajas.15.0029.
  • Muhsinin, M., N. Ulupi, A. Gunawan, I. Wibawan, and C. Sumantri. 2016. “Association of NRAMP1 Polymorphisms with Immune Traits in Indonesian Native Chickens.” International Journal of Poultry Science 15: 401–406.
  • Muhsinin, M., N. Ulupi, A. Gunawan, I. W. T. Wibawan, and C. Sumantri. 2017. “G. 640T> C Polymorphism of the TGF-β2 Gene Is Associated with Salmonella Pullorum Resistance in Indonesian Chickens.” Animal Production 19 (2): 81–92. doi:10.20884/1.jap.2017.19.2.597.
  • Peakall, R., and P. E. Smouse. 2012. “GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research an Update.” Bioinformatics 28 (19): 2537–2539. doi:10.1093/bioinformatics/bts460.
  • Raymond, M. 1995. “GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism.” Journal of Heredity 86: 248–249. doi:10.1093/oxfordjournals.jhered.a111573.
  • Saleh, M. S. 2019. “Using Bioinformatics SNP to Improve Immune Genetic Response against Some Pathogens in Poultry.” M Sc. thesis in cooperation between Faculty of Agriculture at Moshtohor, Benha University and TEMPUS European Union program, Egypt.
  • Saleh, M. S., M. M. Iraqi, M. H. Khalil, and A. Camarda. 2020. “Crossbreeding Analyses and Polymorphic Associations of Gallinacin Genes with Growth Traits in Chickens.” Livestock Science 240 (2020): 104–118. doi:10.1016/j.livsci.2020.104118.
  • Saxena, V. K., and G. Kolluri. 2018. “Selection Methods in Poultry Breeding: From Genetics to Genomics. Application of Genetics and Genomics in Poultry Science.” Accessed 4 January 2020. doi:10.5772/intechopen.77966
  • Sugiarto, H., and P. Yu. 2004. “Avian Antimicrobial Peptides: The Defense Role of β-defensins.” Biochemical and Biophysical Research Communications 323 (3): 721–727. doi:10.1016/j.bbrc.2004.08.162.
  • Supakorn, C. 2016. “Genetic Polymorphism of ApoB2, TGF-β2, TRAIL and IAP1 Genes and Their Associations with Growth Traits in Thai Native Chicken.” Aisian Journal of Poultry Science 10: 141–146.
  • Tao, Y., G. H. Li, Y. P. Hu, M. D. Mekki, K. W. Chen, and J. Y. Wang. 2008. “Genetic Effects of MC4R and POU1F1 Gene on the Growth Performance in Jinghai Yellow Chicken.” Yi Chuan 30 (7): 900–906. doi:10.3724/SP.J.1005.2008.00900.
  • Thinh, N. H., H. A. Tuan, N. T. Vinh, B. H. Doan, N. T. P. Giang, F. Frédéric, M. Nassim, N. V. Linh, and P. K. Dang. 2019. “Association of Single Nucleotide Polymorphisms in the Insulin and Growth Hormone Gene with Growth Traits of Mia Chicken.” Indian Journal of Animal Research 54 (6): 661–666. doi:10.18805/ijar.B-955.
  • Tohidi, R., I. B. Idris, J. M. Panandam, and M. H. Bejo. 2013. “The Effects of Polymorphisms in 7 Candidate Genes on Resistance to Salmonella Enteritidis in Native Chickens.” Poultry Science 92 (4): 900–909. doi:10.3382/ps.2012-02797.
  • Ulupi, N., C. Sumantri, and I. Wibawan. 2013. “Association of TLR4 Gene Genotype and Resistance against Salmonella Enteritidis Natural Infection in Kampung Chicken.” International Journal of Poultry Science 13: 467–472. doi: 10.3923/ijps.2014.467.472.
  • Xiao, Y., A. L. Hughes, J. Ando, Y. Matsuda, J. Cheng, D. Skinner-Noble, and G. Zhang. 2004. “A Genome-wide Screen Identifies A Single β-defensin Gene Cluster in the Chicken: Implications for the Origin and Evolution of Mammalian Defensins.” BMC Genomics 5 (1): 56. doi:10.1186/1471-2164-5-56.
  • Zelver, N., M. Hamilton, B. Pitts, D. Goeres, D. Walker, P. Sturman, and J. Heersink. 1999. “Measuring Antimicrobial Effects on Biofilm Bacteria: from Laboratory to Field.”Methods in Enzymology 310: 608–628.
  • Zhang, L., M. Huang, Y. Li, D. Chen, and X. Shi. 2020. “Association of Three Beta-defensin Gene (Avbd4, AvBD5, AvBD14) Polymorphisms with Carrier-state Susceptibility to Salmonella in Chickens.” British Poultry Science. May. 1–9. doi:10.1080/00071668.2020.1752913.
  • Zhao, X., M. Li, S. Xu, and G. Liu. 2015. “Single Nucleotide Polymorphisms in IGFBP-2 Gene and Their Associations with Body Weight Traits on Jinghai Yellow Chicken.” Brazilian Journal of Poultry Science 17: 497–502. doi:10.1590/1516-635X1704497-502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.