196
Views
0
CrossRef citations to date
0
Altmetric
Nutrition & Metabolism

Bone characteristics, pre-caecal phytate degradation, mineral digestibility and tissue expression were marginally affected by zinc level and source in phytase-supplemented diets in 21-day-old broiler chickens

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 331-341 | Received 10 Nov 2023, Accepted 29 Dec 2023, Published online: 23 Feb 2024

References

  • Adeola, O., B. V. Lawrence, A. L. Sutton, and T. R. Cline. 1995. “Phytase-Induced Changes in Mineral Utilization in Zinc-Supplemented Diets for Pigs.” Journal of Animal Science 73 (11): 3384–3391. https://doi.org/10.2527/1995.73113384x.
  • Ao, T., J. L. Pierce, A. J. Pescatore, A. H. Cantor, K. A. Dawson, M. J. Ford, and B. L. Shafer. 2007. “Effects of Organic Zinc and Phytase Supplementation in a Maize-Soybean Meal Diet on the Performance and Tissue Zinc Content of Broiler Chicks.” British Poultry Science 48 (6): 690–695. https://doi.org/10.1080/00071660701694072.
  • AOAC. 2006. Official Methods of Analysis of AOAC International. 18th ed. Alrington, VA: AOAC International.
  • Augspurger, N. R., J. D. Spencer, D. M. Webel, and D. H. Baker. 2004. “Pharmacological Zinc Levels Reduce the Phosphorus-Releasing Efficacy of Phytase in Young Pigs and Chickens.” Journal of Animal Science 82 (6): 1732–1739. https://doi.org/10.2527/2004.8261732x.
  • Baker, D. H., and C. B. Ammerman. 1995. “Zinc bioavailability.” In Bioavailability of Nutrients for Animals, edited by C. B. Ammerman, D. H. Baker and A. J. Lewis, 367–398. Cambridge, MA: Academic Press.
  • Brugger, D., and W. Windisch. 2019. “Zn Metabolism of Monogastric Species and Consequences for the Definition of Feeding Requirements and the Estimation of Feed Zn Bioavailability.” Journal of Zhejiang University Science B 20 (8): 617–627. https://doi.org/10.1631/jzus.B1900024.
  • Cobb. 2022. “Cobb500 Broiler.” Performance & Nutrition Supplement. https://www.cobb-vantress.com/assets/5a88f2e793/Broiler-Performance-Nutrition-Supplement.pdf.
  • Fordyce, E. J., R. M. Forbes, K. R. Robbins, and J. W. Erdman. 1987. “Phytate×calcium/Zinc Molar Ratios: Are They Predictive of Zinc Bioavailability?” Journal of Food Science 52 (2): 440–444. https://doi.org/10.1111/j.1365-2621.1987.tb06634.x.
  • Garrick, M. D., K. G. Dolan, C. Horbinski, A. J. Ghio, D. Higgins, M. Porubcin, E. G. Moore, L. N. Hainsworth, J. N. Umbreit, and M. E. Conrad. 2003. “DMT1: a mammalian transporter for multiple metals.” Biometals 16:41–54. https://doi.org/10.1023/A:1020702213099.
  • Hu, Y., Y. Huang, C. Wang, W. Zhang, Y. Qu, D. Li, W. Wu, F. Gao, L. Zhu, and B. Wu. 2023. “The Organic Zinc with Moderate Chelation Strength Enhances the Expression of Related Transporters in the Jejunum and Ileum of Broilers.” Poultry Science 102 (3): 102477. https://doi.org/10.1016/j.psj.2023.102477.
  • Huber, K., E. Zeller, and M. Rodehutscord. 2015. “Modulation of Small Intestinal Phosphate Transporter by Dietary Supplements of Mineral Phosphorus and Phytase in Broilers.” Poultry Science 94 (5): 1009–1017. https://doi.org/10.3382/ps/pev065.
  • Krane, S. M., and M. Inada. 2008. “Matrix Metalloproteinases and Bone.” Bone 43 (1): 7–18. https://doi.org/10.1016/j.bone.2008.03.020.
  • Kwiecień, M., A. Winiarska-mieczan, A. Milczarek, E. Tomaszewska, and J. Matras. 2016. “Effects of Zinc Glycine Chelate on Growth Performance, Carcass Characteristics, Bone Quality and Mineral Content in Bone of Broiler Chicken.” Livestock Science 191:43–50. https://doi.org/10.1016/j.livsci.2016.07.005.
  • Lichten, L. A., and R. J. Cousins. 2009. “Mammalian zinc transporters: nutritional and physiologic regulation.” Annual Review of Nutrition 29:153–176. https://doi.org/10.1146/annurev-nutr-033009-083312.
  • Livak, K. J., and T. D. Schmittgen. 2001. “Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2− Δδct Method.” Methods 25 (4): 402–408. https://doi.org/10.1006/meth.2001.1262.
  • Maddaiah, V. T., A. A. Kurnick, and B. L. Reid. 1964. “Phytic Acid Studies.” Proceedings of the Society for Experimental Biology and Medicine, 115: 391–393. https://doi.org/10.3181/00379727-115-28922.
  • Maenz, D. D., C. M. Engele-schaan, R. W. Newkirk, and H. L. Classen. 1999. “The Effect of Minerals and Mineral Chelators on the Formation of Phytase-Resistant and Phytase-Susceptible Forms of Phytic Acid in Solution and in a Slurry of Canola Meal.” Animal Feed Science and Technology 81 (3–4): 177–192. https://doi.org/10.1016/S0377-8401(99)00085-1.
  • Martin, L., U. Lodemann, A. Bondzio, E.-M. Gefeller, W. Vahjen, J. R. Aschenbach, J. Zentek, and R. Pieper. 2013. “A High Amount of Dietary Zinc Changes the Expression of Zinc Transporters and Metallothionein in Jejunal Epithelial Cells in vitro and in vivo but Does Not Prevent Zinc Accumulation in Jejunal Tissue of Piglets.” The Journal of Nutrition 143 (8): 1205–1210. https://doi.org/10.3945/jn.113.177881.
  • Mohanna, C., and Y. Nys. 1999. “Changes in Zinc and Manganese Availability in Broiler Chicks Induced by Vegetal and Microbial Phytases.” Animal Feed Science and Technology 77 (3–4): 241–253. https://doi.org/10.1016/S0377-8401(98)00254-5.
  • National Research Council. 1994. Nutrient Requirements of Poultry. 9th ed. Washington, DC, USA: National Academy of Science. https://doi.org/10.17226/2114.
  • Nguyen, H. T. T., N. Morgan, J. R. Roberts, S.-B. Wu, R. A. Swick, and M. Toghyani. 2021. “Zinc Hydroxychloride Supplementation Improves Tibia Bone Development and Intestinal Health of Broiler Chickens.” Poultry Science 100 (8): 101254. https://doi.org/10.1016/j.psj.2021.101254.
  • Olukosi, O. A., S. van Kuijk, and Y. Han. 2018. “Copper and Zinc Sources and Levels of Zinc Inclusion Influence Growth Performance, Tissue Trace Mineral Content and Carcass Yield of Broiler Chickens.” Poultry Science 97 (11): 3891–3898. https://doi.org/10.3382/ps/pey247.
  • Philippi, H., V. Sommerfeld, W. Windisch, O. A. Olukosi, A. Monteiro, and M. Rodehutscord. 2023a. “Interactions of Zinc with Phytate and Phytase in the Digestive Tract of Poultry and Pigs: A Review.” Journal of the Science of Food and Agriculture 103 (15): 7333–7342. https://doi.org/10.1002/jsfa.12879.
  • Philippi, H., V. Sommerfeld, O. A. Olukosi, W. Windisch, A. Monteiro, and M. Rodehutscord. 2023b. “Effect of Dietary Zinc Source, Zinc Concentration and Exogenous Phytase on Intestinal Phytate Degradation Products, Bone Mineralization and Zinc Status of Broiler Chickens.” Poultry Science 102 (12): 103160. https://doi.org/10.1016/j.psj.2023.103160.
  • Rodehutscord, M., V. Sommerfeld, I. Kühn, and M. R. Bedford. 2022. “Phytases: Potential and Limits of Phytate Destruction in the Digestive Tract of Pigs and Poultry.” In Enzymes in Farm Animal Nutrition, 124–152. Wallingford, UK: CAB International. https://doi.org/10.1079/9781789241563.0007.
  • Santos, T., C. Connolly, and R. Murphy. 2015. “Trace Element Inhibition of Phytase Activity.” Biological Trace Element Research 163 (1): 255–265. https://doi.org/10.1007/s12011-014-0161-y.
  • Schlegel, P., Y. Nys, and C. Jondreville. 2010. “Zinc Availability and Digestive Zinc Solubility in Piglets and Broilers Fed Diets Varying in Their Phytate Contents, Phytase Activity and Supplemented Zinc Source.” Animal 4 (2): 200–209. https://doi.org/10.1017/S1751731109990978.
  • Sebastian, S., S. P. Touchburn, E. R. Chavez, and P. C. Lague. 1996. “The Effects of Supplemental Microbial Phytase on the Performance and Utilization of Dietary Calcium, Phosphorus, Copper and Zinc in Broiler Chickens Fed Corn-Soybean Diets.” Poultry Science 75 (6): 729–736. https://doi.org/10.3382/ps.0750729.
  • Sommerfeld, V., S. Künzel, M. Schollenberger, I. Kühn, and M. Rodehutscord. 2018. “Influence of Phytase or Myo-Inositol Supplements on Performance and Phytate Degradation Products in the Crop, Ileum and Blood of Broiler Chickens.” Poultry Science 97 (3): 920–929. https://doi.org/10.3382/ps/pex390.
  • Sommerfeld, V., M. Schollenberger, I. Kühn, and M. Rodehutscord. 2018. “Interactive Effects of Phosphorus, Calcium and Phytase Supplements on Products of Phytate Degradation in the Digestive Tract of Broiler Chickens.” Poultry Science 97 (4): 1177–1188. https://doi.org/10.3382/ps/pex404.
  • Świątkiewicz, S., J. Koreleski, and D. Zhong. 2001. “The Bioavailability of Zinc from Inorganic and Organic Sources in Broiler Chickens as Affected by Addition of Phytase.” Journal of Animal and Feed Science 10 (2): 317–328. https://doi.org/10.22358/jafs/67987/2001.
  • USEPA. 1994. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Revision 4.4. Cincinnati, OH: United States Environmental Protection Agency.
  • Wedekind, K. J., A. E. Hortin, and D. H. Baker. 1992. “Methodology for Assessing Zinc Bioavailability: Efficacy Estimates for Zinc-Methionine, Zinc Sulfate and Zinc Oxide.” Journal of Animal Science 70 (1): 178–187. https://doi.org/10.2527/1992.701178x.
  • Yi, Z., E. T. Kornegay, and D. M. Denbow. 1996. “Supplemental Microbial Phytase Improves Zinc Utilization in Broilers.” Poultry Science 75 (4): 540–546. https://doi.org/10.3382/ps.0750540.
  • Zeigler, T. R., R. M. Leach, L. C. Norris, and M. L. Scott. 1961. “Zinc Requirement of the Chick: Factors Affecting Requirement.” Poultry Science 40 (6): 1584–1593. https://doi.org/10.3382/ps.0401584.
  • Zeller, E., M. Schollenberger, I. Kühn, and M. Rodehutscord. 2015. “Hydrolysis of Phytate and Formation of Inositol Phosphate Isomers without or with Supplemented Phytases in Different Segments of the Digestive Tract of Broilers.” Journal of Nutritional Science 4:e1. https://doi.org/10.1017/jns.2014.62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.