Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 55, 2016 - Issue 3
121
Views
2
CrossRef citations to date
0
Altmetric
Materials Processing and Characterisation

Experimental investigation into microstructure, metallurgy and mechanical properties of AISI 422 stainless steel weldments produced using fibre laser welding direct forming

, , , , &
Pages 285-294 | Received 06 Nov 2015, Accepted 24 May 2016, Published online: 04 Jul 2016

References

  • S. K. Albert, A. K. Bhaduri, C. R. Das, V. Ramasubbu and S. Ravi: ‘In situ weld repair of blade tenon of steam turbine in a power plant’, Int. J. Nucl. Energy Sci. Technol., 2007, 3, 413–421. doi: 10.1504/IJNEST.2007.017081
  • C. L. Ou and R. K. Shiue: ‘Microstructural evolution of brazing 422 stainless steel using the BNi-3 braze alloy’, J. Mater. Sci., 2003, 38, 2337–2346. doi: 10.1023/A:1023928312572
  • L. W. Tsay, Y. M. Chang, S. Torng and H. C. Wu: ‘Improved impact toughness of 13Cr martensitic stainless steel hardened by laser’, J. Mater. Eng. Perform., 2002, 47, 422–427. doi: 10.1361/105994902770343953
  • T. C. Yang and C. Chen: ‘Laser welding of 422 stainless steel with Inconel 625 filler metal’, ISIJ Int., 2004, 44, 852–857. doi: 10.2355/isijinternational.44.852
  • R. P. Dewey and N. F. Rieger: ‘Steam turbine blade reliability’; 1982, Boston, USA, Electrical Power Research Institute (EPRI).
  • C. A. Poblano-Salas, J. D. O. Barceinas-Sanchez and J. C. Sanchez-Jimenez: ‘Failure analysis of an AISI 410 stainless steel airfoil in a steam turbine’, Eng. Failure Anal., 2011, 18, 68–74. doi: 10.1016/j.engfailanal.2010.08.006
  • C. Booysen, P. S. Heyns, M. P. Hindley and R. Scheepers: ‘Fatigue life assessment of a low pressure steam turbine blade during transient resonant conditions using a probabilistic approach’, Int. J. Fatigue, 2015, 7, 317–326.
  • C. M. Lin, H. L. Tsai, C. L. Lee, D. S. Chou and J. W. Huang: ‘Evolution of microstructures and properties of magnesium alloy weldments produced with CO2 laser process', Mater. Sci. Eng. A, 2012, 548, 12–18. doi: 10.1016/j.msea.2012.03.033
  • Z. M. Yang, H. G. Yan, J. H. Chen, B. Su, G. H. Zhang and Q. Zhao: ‘Microstructural characterisation and liquation behaviour of laser welded joint of fine grained AZ91 magnesium alloy thin sheets', Sci. Technol. Weld Join., 2015, 20, 27–34. doi: 10.1179/1362171814Y.0000000252
  • H. M. Wang and G. Duan: ‘Wear and corrosion behavior of laser clad Cr3Si reinforced intermetallic composite coatings', Intermetallics, 2003, 11, 755–762. doi: 10.1016/S0966-9795(03)00078-5
  • H. Tan, J. Chen, F. Y. Zhang, X. Lin and W. D. Huang: ‘Process analysis for laser solid forming of thin-wall structure’, Int. J. Mach. Tools Manuf., 2010, 50, 1–8. doi: 10.1016/j.ijmachtools.2009.10.003
  • K. Venkatakrishnan, N. R. Sivakumar, C. W. Hee, B. Tan, W. L. Liang and G. K. Gan: ‘Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser’, Appl. Phys. A: Mater. Sci. Process., 2003, 77, 959–963. doi: 10.1007/s00339-002-1993-4
  • X. H. Wu, J. Liang, J. F. Mei, C. Mitchell, P. S. Goodwin and W. Voice: ‘Microstructures of laser-deposited Ti-6Al-4V’, Mater. Des., 2004, 25, 137–144. doi: 10.1016/j.matdes.2003.09.009
  • X. Lin, T. M. Yue, H. O. Yang and W. D. Huang: ‘Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy’, Acta Mater., 2006, 54, 1901–1915. doi: 10.1016/j.actamat.2005.12.019
  • Z. L. Lu, D. C. Li and B. H. Lu: ‘The prediction of the building precision in the laser engineered net shaping process using advanced networks', Opt. Laser Eng., 2010, 48, 519–525. doi: 10.1016/j.optlaseng.2010.01.002
  • H. Tan, J. Chen, F. Y. Zhang, X. Lin and W. D. Huang: ‘Research on molten pool temperature in the process of laser rapid forming’, J. Mater. Process Technol., 2008, 198, 454–462. doi: 10.1016/j.jmatprotec.2007.06.090
  • X. He, P. W. Fuerschbach and T. DebRoy: ‘Heat transfer and fluid flow during laser spot welding of 304 stainless steel’, J. Phys. D Appl. Phys., 2003, 36, 1388–1398. doi: 10.1088/0022-3727/36/12/306
  • L. Tran: ‘The tenon repairs of steam turbine blade by laser cladding method’, Master thesis, National Taiwan University of Science and Technology, 2010.
  • ASTM Standard E8M, ASTM, PA, 2009.
  • ASTM Standard E-23, ASTM, PA, 1998.
  • J. C. Lippold and J. Kotecki: ‘Welding metallurgy and weldability of stainless steels’, 63–70; 2005, New Delhi, India, John Wiley and Sons.
  • S. H. Baghjari and S. A. A. Akbari Mousavi: ‘Effects of pulsed Nd:YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steel’, Mater. Des., 2013, 43, 1–9. doi: 10.1016/j.matdes.2012.06.027
  • M. M. A. Khan, L. Romoli, R. Ishak, M. Fiaschi, G. Dini and M. De Sanctis: ‘Experimental investigation on seam geometry, microstructure evolution and microhardness profile of laser welded martensitic stainless steels', Opt. Laser Technol., 2012, 44, 1611–1619. doi: 10.1016/j.optlastec.2011.11.035
  • Y. C. Lin and S. C. Chen: ‘Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment’, J. Mater. Process. Technol., 2003, 138, 22–27. doi: 10.1016/S0924-0136(03)00043-8
  • S. R. Allahkaram, S. Borjali and H. Khosravi: ‘Investigation of weldability and property changes of high pressure heat-resistant cast stainless steel tubes used in pyrolysis furnaces after a five-year service’, Mater. Des., 2012, 33, 476–484. doi: 10.1016/j.matdes.2011.04.052
  • K. Ozbaysal and O. T. Inal: ‘Thermodynamics and structure of solidification in the fusion zone of CO2 laser welds of 15-5 PH stainless steel’, Mater. Sci. Eng. A, 1990, 130, 205–217. doi: 10.1016/0921-5093(90)90061-7
  • M. R. Nekouie Esfahani, J. Coupland, S. Marimuthu, M. R. Nekouie Esfahani, J. Coupland and S. Marimuthu: ‘Numerical simulation of alloy composition in dissimilar laser welding’, J. Mater. Process. Technol., 2015, 224, 135–142. doi: 10.1016/j.jmatprotec.2015.05.005
  • A. A. Iman, F. Mansour, A. G. Mohammad and D. Iman: ‘The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L’, Mater. Des., 2014, 54, 331–341. doi: 10.1016/j.matdes.2013.08.052
  • M. Nekouie Esfahani, J. Coupland and S. Marimuthu: ‘Microstructure and mechanical properties of a laser welded low carbon-stainless steel joint’, J. Mater. Process. Technol., 2014, 214, 2941–2948. doi: 10.1016/j.jmatprotec.2014.07.001
  • J. C. Lipplod: ‘Transformation and tempering behavior of 12Cr-1Mo-0.3V martensitic stainless steel weldment’, J. Nucl. Mater., 1981, 104, 1127–1131. doi: 10.1016/0022-3115(82)90752-8
  • S. C. Wu, H. C. Wen, M. J. Wu and C. P. Chou: ‘Fracture responses of microstructures of electron beam-welded D6AC’, Vacuum, 2012, 86, 1828–1833. doi: 10.1016/j.vacuum.2012.03.059
  • C. M. Lin and C. H. Lu: ‘Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds', Metall. Mater. Trans. B, 2001, 32, (1), 163–172. doi: 10.1007/s11663-001-0018-6
  • H. Zhao and T. Debroy: ‘Weld metal composition change during conduction mode laser welding of aluminum alloy 5182’, Metall. Mater. Trans. B, 2001, 32, 163–172. doi: 10.1007/s11663-001-0018-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.