Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 57, 2018 - Issue 3
202
Views
7
CrossRef citations to date
0
Altmetric
Materials Processing and Characterization

Characteristics and properties of Cu/nano-SiC and Cu/nano-SiC/graphite hybrid composite coatings produced by pulse electrodeposition technique

, , &
Pages 358-366 | Received 28 Aug 2017, Accepted 19 Feb 2018, Published online: 02 Mar 2018

References

  • Celebi Efe G, Ipek M, Zeytin S, et al. An investigation of the effect of SiC particle size on Cu–SiC composites. Compos Part B. 2012;43(4):1813–1822. doi: 10.1016/j.compositesb.2012.01.006
  • Pradhan AK, Das S. Dry sliding wear and friction behavior of Cu-SiC nanocomposite coating prepared by pulse reverse electrodeposition. Tribol Trans. 2014;57(1):46–56. doi: 10.1080/10402004.2013.843739
  • Pradhan AK, Das S. Pulse-reverse electrodeposition of Cu–SiC nanocomposite coating: effect of concentration of SiC in the electrolyte. J Alloys Compd. 2014;590:294–302. doi: 10.1016/j.jallcom.2013.12.139
  • Li X, Wang X, Gao R, et al. Study of deposition patterns of plating layers in SiC/Cu composites by electro-brush plating. Appl Surf Sci. 2011;257(23):10294–10299. doi: 10.1016/j.apsusc.2011.07.045
  • Ashok A, Maharana HS, Basu A. Effect of electro-co-deposition parameters on surface mechanical properties of Cu–TiO2 composite coating. Bull Mater Sci. 2015;38(2):335–342. doi: 10.1007/s12034-015-0884-1
  • Liao T-T, Kung C, Chen C-T. The effects of ultrasonic vibration on mechanical properties of tungsten particle-reinforced copper-matrix composites. Can Metall Q. 2017;56: 450–458. DOI:10.1080/00084433.2017.1361182.
  • Ramalingam S, Balakrishnan K, Subramania A. Mechanical and corrosion resistance properties of electrodeposited Cu–ZrO2 nanocomposites. Trans IMF. 2015;93(5):262–266. doi: 10.1080/00202967.2015.1114727
  • Li L, Niu ZW, Zheng GM. Ultrasonic electrodeposition of Cu–SiC electrodes for EDM. Mater Manuf Process. 2016;31(1):37–41. doi: 10.1080/10426914.2015.1025968
  • Maharana HS, Ashok A, Pal S, et al. Surface-mechanical properties of electrodeposited Cu-Al2O3 composite coating and effects of processing parameters. Metall Mater Trans A. 2016;47(1):388–399. doi: 10.1007/s11661-015-3238-0
  • Robin A, de Santana JCP, Sartori AF. Co-electrodeposition and characterization of Cu–Si3N4 composite coatings. Surf Coat Technol. 2011;205(19):4596–4601. doi: 10.1016/j.surfcoat.2011.03.142
  • Ramalingam S, Balakrishnan K, Shanmugasamy S, et al. Electrodeposition and characterisation of Cu–MWCNTs nanocomposite coatings. Surf Eng. 2017;33(5):369–374. doi: 10.1080/02670844.2016.1258164
  • Kasturibai S, Kalaignan GP. Pulse electrodeposition and corrosion properties of Ni–Si3N4 nanocomposite coatings. Bull Mater Sci. 2014;37(3):721–728. doi: 10.1007/s12034-014-0689-7
  • Mosallanejad MH, Shafyei A, Akhavan S. Simultaneous co-deposition of SiC and CNT into the Ni coating. Can Metall Q. 2016;55(2):147–155. doi: 10.1080/00084433.2016.1150406
  • Walsh FC, Ponce de Leon C. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans IMF. 2014;92(2):83–98. doi: 10.1179/0020296713Z.000000000161
  • Ghazanlou SI, Ahmadiyeh S, Yavari R. Investigation of pulse electrodeposited Ni–Co/SiO2 nanocomposite coating. Surf Eng. 2017;33(5):337–347. doi: 10.1080/02670844.2016.1275484
  • Ebrahim-Ghajari M, Allahkaram SR, Mahdavi S. Corrosion behaviour of electrodeposited nanocrystalline Co and Co/ZrO2 nanocomposite coatings. Surf Eng. 2015;31(3):251–257. doi: 10.1179/1743294414Y.0000000355
  • Pavithra CLP, Sarada BV, Rajulapati KV, et al. Process optimization for pulse reverse electrodeposition of graphene-reinforced copper nanocomposites. Mater Manuf Process. 2016;31(11):1439–1446. doi: 10.1080/10426914.2015.1127938
  • Bhat A, Bourell D. Tribological properties of metal matrix composite coatings produced by electrodeposition of copper. Mater Sci Technol. 2015;31(8):969–974. doi: 10.1179/1743284714Y.0000000610
  • Buchner P, LÜTzenkirchen-Hecht D, Strehblow H-H, et al. Production and characterization of nanosized Cu/O/SiC composite particles in a thermal r.f. plasma reactor. J Mater Sci. 1999;34(5):925–931. doi: 10.1023/A:1004567222116
  • Majidi H, Aliofkhazraei M, Karimzadeh A, et al. Optimising number of layers of pulse electrodeposited Ni–Al2O3 multilayer nanocomposite coatings for corrosion and wear resistance. Can Metall Q. 2017;56(2):179–189. doi: 10.1080/00084433.2017.1295649
  • Yang Y, Cheng YF. Fabrication of Ni–Co–SiC composite coatings by pulse electrodeposition – effects of duty cycle and pulse frequency. Surf Coat Technol. 2013;216:282–288. doi: 10.1016/j.surfcoat.2012.11.059
  • Allahyarzadeh MH, Aliofkhazraei M, Sabour Rouhaghdam AR, et al. Functionally graded nickel–tungsten coating: electrodeposition, corrosion and wear behaviour. Can Metall Q. 2016;55(3):303–311. doi: 10.1080/00084433.2016.1190542
  • Adabi M, Amadeh A. Effect of electrodeposition conditions on properties of Ni–Al composite coatings. Surf Eng. 2015;31(9):650–658. doi: 10.1179/1743294414Y.0000000449
  • Lakra S, Maharana HS, Basu A. Synthesis and characterization of Cr-ZrO2 composite coating formed by DC and pulse electrodeposition. Mater Manuf Process. 2016;31(11):1447–1453. doi: 10.1080/10426914.2016.1151039
  • Sangeetha S, Kalaignan GP. Studies on the electrodeposition and characterization of PTFE polymer inclusion in Ni-W-BN nanocomposite coatings for industrial applications. RSC Adv. 2015;5(90):74115–74125. doi: 10.1039/C5RA11069F
  • Zhao C, Yao Y, He L. Electrodeposition and characterization of Ni-W/ZrO2 nanocomposite coatings. Bull Mater Sci. 2014;37(5):1053–1058. doi: 10.1007/s12034-014-0044-z
  • Mahdavi S, Allahkaram SR. Characteristics of electrodeposited cobalt and titania nano-reinforced cobalt composite coatings. Surf Coat Technol. 2013;232:198–203. doi: 10.1016/j.surfcoat.2013.05.007
  • Chen L, Yu G, Chu Y, et al. Effect of three types of surfactants on fabrication of Cu-coated graphite powders. Adv Powder Technol. 2013;24(1):281–287. doi: 10.1016/j.apt.2012.07.003
  • Wu YT, Lei L, Shen B, et al. Investigation in electroless Ni–P–Cg(graphite)–SiC composite coating. Surf Coat Technol. 2006;201(1):441–445. doi: 10.1016/j.surfcoat.2005.11.140
  • Shtertser A, Muders C, Veselov S, et al. Computer controlled detonation spraying of WC/Co coatings containing MoS2 solid lubricant. Surf Coat Technol. 2012;206(23):4763–4770. doi: 10.1016/j.surfcoat.2012.03.043
  • Chen Q, Tan D-Q, Liu R, et al. Study on electrodeposition of Al on W–Cu substrate in AlCl3+LiAlH4 solutions. Surf Coat Technol. 2011;205(19):4418–4424. doi: 10.1016/j.surfcoat.2011.03.058
  • Guo C, Zuo Y, Zhao X, et al. The effects of electrodeposition current density on properties of Ni–CNTs composite coatings. Surf Coat Technol. 2008;202(14):3246–3250. doi: 10.1016/j.surfcoat.2007.11.032
  • Hansal WEG, Sandulache G, Mann R, et al. Pulse-electrodeposited NiP–SiC composite coatings. Electrochim Acta. 2013;114:851–858. doi: 10.1016/j.electacta.2013.08.182
  • Asnavandi M, Ghorbani M, Kahram M. Production of Cu–Sn–graphite–SiC composite coatings by electrodeposition. Surf Coat Technol. 2013;216:207–214. doi: 10.1016/j.surfcoat.2012.11.042
  • Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths. J Electrochem Soc. 1972;119(8):1009–1012. doi: 10.1149/1.2404383
  • Stojak JL, Talbot JB. Investigation of electrocodeposition using a rotating cylinder electrode. J Electrochem Soc. 1999;146(12):4504–4513. doi: 10.1149/1.1392665
  • Sajjadnejad M, Mozafari A, Omidvar H, et al. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings. Appl Surf Sci. 2014;300:1–7. doi: 10.1016/j.apsusc.2013.12.143
  • Lajevardi SA, Shahrabi T. Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings. Appl Surf Sci. 2010;256(22):6775–6781. doi: 10.1016/j.apsusc.2010.04.088
  • Nickchi T, Ghorbani M. Pulsed electrodeposition and characterization of bronze-graphite composite coatings. Surf Coat Technol. 2009;203(20):3037–3043. doi: 10.1016/j.surfcoat.2009.03.029
  • Hovestad A, Janssen LJJ, et al. Electroplating of metal matrix composites by codeposition of suspended particles. In: Conway BE, Vayenas CG, White RE, editors. Modern aspects of electrochemistry. Boston (MA): Springer US; 2005. p. 475–532.
  • Samal CP, Parihar JS, Chaira D. The effect of milling and sintering techniques on mechanical properties of Cu–graphite metal matrix composite prepared by powder metallurgy route. J Alloys Compd. 2013;569:95–101. doi: 10.1016/j.jallcom.2013.03.122
  • Wu Y, Shen B, Liu L, et al. The tribological behaviour of electroless Ni–P–Gr–SiC composite. Wear. 2006;261(2):201–207. doi: 10.1016/j.wear.2005.09.008
  • Mahdavi S, Akhlaghi F. Effect of the graphite content on the tribological behavior of Al/Gr and Al/30SiC/Gr composites processed by in situ powder metallurgy (IPM) method. Tribol Lett. 2011;44(1):1–12. doi: 10.1007/s11249-011-9818-2
  • Aruna ST, Bindu CN, Ezhil Selvi V, et al. Synthesis and properties of electrodeposited Ni/ceria nanocomposite coatings. Surf Coat Technol. 2006;200(24):6871–6880. doi: 10.1016/j.surfcoat.2005.10.035
  • Faraji S, Abdul Rahim A, Mohamed N, et al. A study of electroless copper–phosphorus coatings with the addition of silicon carbide (SiC) and graphite (Cg) particles. Surf Coat Technol. 2011;206(6):1259–1268. doi: 10.1016/j.surfcoat.2011.08.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.