Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 57, 2018 - Issue 3
207
Views
15
CrossRef citations to date
0
Altmetric
Mineral Processing

A survey on troubleshooting of closed-circuit grinding system

Pages 328-340 | Received 28 Sep 2017, Accepted 09 Apr 2018, Published online: 23 Apr 2018

References

  • Napier-Munn TJ, Morrell S, Morrison RD, et al. Mineral comminution circuit. JKMRC. 1996;2:154–190.
  • Chen XS, Zhai J, Li SH, et al. Application of model predictive control in ball mill grinding circuit. Miner Eng. 2007;20:1099–1108. doi:10.1016/j.mineng.2007.04.007.
  • Powell MS, Bye AR. Beyond mine-to-mill-circuit design for energy efficient resource utilisation. Tenth mill operators’ conference; 2009 Oct; Adelaide, SA; p. 12–14.
  • Bearman RA. Step change in the context of comminution. Miner Eng. 2013;43–44:2–11. doi:10.1016/j.mineng.2012.06.010.
  • Yianatos JB, Lisboa MA, Baeza DR. Grinding capacity enhancement by solid concentration control of hydrocyclone underflow. Miner Eng. 2002;15:317–323. doi:10.1016/S0892-6875(02)00027-4.
  • Tsakalakis K. Use of a simplified method to calculate closed crushing circuits. Miner Eng. 2000;13:1289–1299. doi:10.1016/S0892-6875(00)00111-4.
  • Lestage R, Pomerleau A, Hodouin D. Constrained real-time optimization of a grinding circuit using steady–state linear programming supervisory control. Powder Technol. 2002;124:254–263. doi:10.1016/S0032-5910(02)00028-1.
  • Silva AC, Silva EMS, Matos JDV. Circulating load calculation in grinding circuits. REM: R Esc Minas Ouro Preto. 2014;67(1):101–106.
  • Silva AC, Silva EMS, Matos JDV. A modification in Plitt’s for hydrocyclone simulation. Int J Rec Res Appl Stud. 2012;13(3):753–758.
  • Bond, FC. 1962. Crushing and grinding calculations – additions and revisions. Milwaukee (WI): Allis-Chalmers Manufacturing Co.; 1962.
  • Gupta VK, Kapur PC. Empirical correlations for the effects of particulate mass and ball size on the selection parameters in the discretized batch grinding equation. Powder Technol. 1974;10:217–223. doi:10.1016/0032-5910(74)85045-X.
  • Austin LG, Shoji K, Luckie PT. The effect of ball size on mill performance. Powder Technol. 1976;14:71–79. doi:10.1016/0032-5910(76)80009-5.
  • Mankosa MJ, Adel GT, Yoon RH. Effect of media size in stirred ball mill grinding of coal. Powder Technol. 1986;49:75–82. doi:10.1016/0032-5910(86)85008-2.
  • Gezerman AZ, Corbacioglu BD. Use of uniform-sized balls to improve the manufacturing of CaCO3 in ball mills. Int J Modern Chem. 2012;1(3):116–124.
  • Chimwani N, Mulenga FK, Hildebrandt D. Ball size distribution for the maximum production of a narrowly-sized mill product. Powder Technol. 2015;284:12–18. doi:10.1016/j.powtec.2015.06.037.
  • Concha F, Magne L, Austin LG. Optimization of the make-up ball charge in a grinding mill. Int J Miner Process. 1992;34:231–241. doi:10.1016/0301-7516(92)90076-9.
  • Cho H, Kwon J, Kim K, et al. Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills. Powder Technol. 2013;246:625–634. doi:10.1016/j.powtec.2013.06.026.
  • Ebadnejad A. Investigating of the effect of ore work index and particle size on the grinding modeling of some copper sulphide ores. J Material Research Tech. 2016;5(2):101–110. doi:10.1016/j.jmrt.2015.05.002.
  • Mankosa MJ, Adel GT, Yoon RH. Effect of operating parameters in stirred ball mill grinding of coal. Powder Technol. 1989;59:255–260. doi:10.1016/0032-5910(89)80084-1.
  • Makokha AB, Madara DS, Namago SS, et al. Effect of slurry solids concentration and ball loading on mill residence time distribution. Int J Min Eng Miner Process. 2014;3(2):21–27. doi:10.5923/j.mining.20140302.01.
  • Farzanegan A, Ghalaei AE. Assessment of grinding flowsheet designs of Aghdarreh gold ore processing plant based on circuit simulation approach. 23rd International Mining Congress & Exhibition of Turkey; 2013 Apr; Antalya, Turkey. p. 1433–1444.
  • Songfack P, Rajamani R. Hold-up studies in a pilot scale continuous ball mill: dynamic variations due to changes in operating variables. Int J Miner Process. 1999;57:105–113. doi:10.1016/S0301-7516(99)00010-1.
  • Gardner Robin P, Verghese K, Rogers RSC. The on-stream determination of large scale ball mill residence time distributions with short-lived radioactive tracers. Min Eng. 1980;4:422–431.
  • Rogers RSC, Bell DG, Hukki AM. A short-lived radioactive tracer method for the measurement of closed circuit ball mill residence time distributions. Powder Technol. 1982;32:245–252. doi:10.1016/0032-5910(82)85026-2.
  • Lelinski D, Allen J, Redden L, et al. Analysis of the residence time distribution in large flotation machines. Miner Eng. 2002;15:499–505. doi:10.1016/S0892-6875(02)00070-5.
  • Austin LG, Brame K. A comparison of the Bond method for sizing wet tumbling ball mills with a size–mass balance simulation model. Powder Technol. 1983;34:261–274. doi:10.1016/0032-5910(83)87059-4.
  • Hassanzadeh A. Measurement and modeling of residence time distribution of overflow ball mill in continuous closed circuit. Geosystem Eng. 2017;20(5):251–260. doi:10.1080/12269328.2016.1275824.
  • Wills, BA and Napier-Munn, TJ. Wills’ mineral processing technology, an introduction to the practical aspects of Ore treatment and mineral recovery, 7th ed. Elsevier Science and Technology Books, 2006.
  • Barkhuysen, NJ. Implementing strategies to improve mill capacity and efficiency through classification by particle size only, with case studies. The South African institute of mining and metallurgy, base metals conference; 2009; p. 101–114.
  • Hassanzadeh, A. The effect of make-up ball size regime on grinding efficiency of full-scale ball mill. XVII balkan Mineral Processing Congress, Antalya, Turkey; 2017 Nov 1–3; p. 117–123.
  • King RP. Modelling and simulation of mineral processing systems. Oxford: Butterworth-Heinemann Publications; 2001. p. 128–205.
  • Gupta A, Yan DS. Mineral processing design and operation, an introduction. 1. New York: Elsevier; 2006.
  • Jankovic A, Valery W. Closed circuit ball mill-basics revisited. Miner Eng. 2013;43–44:148–153. doi:10.1016/j.mineng.2012.11.006.
  • Hassanzadeh A. A new statistical view to modeling of particle residence time distribution in full–scale overflow ball mill operating in closed-circuit. Geosystem Eng. 2017: 1–11. doi:10.1080/12269328.2017.1392900.
  • Plitt, LR, Finch, JA and Flintoff, BC. Modelling the hydrocyclone classifier. European Symposium Particle Technology; 1980; p. 790–804.
  • Flintoff BC, Plitt LR, Turak AA. Cyclone modelling: a review of present technology. CIM Bull. 1987;80(905):39–50.
  • Hassanzadeh, A. Increasing primary grinding circuit efficiency considering grinding capacity enhancement. XVI balkan Mineral Processing Congress, Belgrade, Serbia; 2015 Jun 17–19; p. 171–177.
  • Ebadnejad A, Karimi GR, Dehghani H. Application of response surface methodology for modelling of ball mills in copper sulphide ore grinding. Powder Technol. 2013;245:292–296. doi:10.1016/j.powtec.2013.04.021.
  • Banisi S, Farzaneh M. Effect of ball size on the performance of grinding and flotation circuits: the Sarcheshmeh copper mine case. Miner Process Extr Metall (Trans. Inst. Min Metall. C). 2006;115(3):165–170. doi:10.1179/174328506X128805.
  • Bwalya MM, Moys MH, Finnie GJ, et al. Exploring ball size distribution in coal grinding mills. Powder Technol. 2014;257:68–73. doi:10.1016/j.powtec.2014.02.044.
  • Davis EW. Ball mill crushing in closed circuit with screens Minnesota school of mines experimental station. Bulletin, 1925;10.
  • Guest RN. A laboratory investigation of the importance of the circulating load in the control of particle size distribution. Proc S Afr Mech Engineer. 1972:46–51.
  • Hukki RT. Fundamentals of the closed grinding circuit. Eng Min J. 1979;180(4):102–109.
  • Morrell S. A method for predicting the specific energy requirement of comminution circuits and assessing their energy utilisation efficiency. Miner Eng. 2008;21(3):224–233. doi:10.1016/j.mineng.2007.10.001.
  • Hassanzadeh A, Karakas F. Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit. J Disper Sci Tech. 2017;38(02):309–316. doi:10.1080/01932691.2016.1164061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.