Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 62, 2023 - Issue 3
201
Views
0
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Effect of milling energy on phase transformation of Ti-Ni powders during mechanical alloying

Effet de l’énergie de broyage sur la transformation de phase des poudres de Ti-Ni lors de la mécanosynthèse

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 397-407 | Received 23 Mar 2022, Accepted 28 Jun 2022, Published online: 13 Jul 2022

References

  • Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678. doi:10.1016/j.pmatsci.2004.10.001.
  • Tria S, Elkedim O, Li WY, et al. Ball milled Ni–Ti powder deposited by cold spraying. J Alloys Compd. 2009;483(1-2):334–336. doi:10.1016/j.jallcom.2008.08.092.
  • Radev DD. Mechanical synthesis of nanostructured titanium–nickel alloys. Adv Powder Technol. 2010;21(4):477–482. doi:10.1016/j.apt.2010.01.010.
  • Ferreira MDA, Luersen MA, Borges PC. Nickel-titanium alloys: a systematic review. Dental Press J Orthod. 2012;17(3):71–82.
  • Choudhary N, Kaur D. Shape memory alloy thin films and heterostructures for MEMS applications: a review. Sens Actuators A. 2016;242:162–181. doi:10.1016/j.sna.2016.02.026.
  • Sharma N, Raj T, Jangra K. Applications of nickel-titanium alloy. J Eng Technol. 2015;5(1):1.
  • Velmurugan C, Senthilkumar V, Dinesh S, et al. Review on phase transformation behavior of NiTi shape memory alloys. Mater Today: Proc. 2018;5(6):14597–14606. doi:10.1016/j.matpr.2018.03.051.
  • Martins CB, Fernandes BB, Ramos ECT, et al. Syntheses of the Ni3Ti, NiTi, and NiTi2 compounds by mechanical alloying. In: Materials science forum. Vol. 530. Trans Tech Publications Ltd; 2006. p. 217–222. doi:10.4028/www.scientific.net/MSF.530-531.217.
  • Cinca N, Lima CRC, Guilemany JM. An overview of intermetallics research and application: status of thermal spray coatings. J Mater Res Technol. 2013;2(1):75–86. doi:10.1016/j.jmrt.2013.03.013.
  • Kocich R, Szurman I, Kursa M. The methods of preparation of Ti–Ni–X alloys and their forming. In: Shape memory alloys-processing, characterization and applications; 2013. p. 28–35. doi:10.5772/50067.
  • Ou SF, Peng BY, Chen YC, et al. Manufacturing and characterization of NiTi alloy with functional properties by selective laser melting. Metals (Basel). 2018;8(5):342. doi:10.3390/met8050342.
  • Aydoğmuş T, Bor AS. Production and characterization of porous TiNi shape memory alloys. Turk J Eng Environ Sci. 2011;35:69–82. doi:10.3906/muh-1007-127.
  • Ren DC, Zhang HB, Liu YJ, et al. Microstructure and properties of equiatomic Ti–Ni alloy fabricated by selective laser melting. Mater Sci Eng A. 2020;771:138586. doi:10.1016/j.msea.2019.138586.
  • Suryanarayana C, Froes FH. Mechanical alloying of titanium-base alloys. Adv Mater. 1993;5(2):96–106. doi:10.1002/adma.19930050205.
  • Suryanarayana C. Mechanical alloying and milling. New York: CRC Press Taylor and Francis Group, Marcel Dekker; 2004; ISBN 13: 978-0-203-02064-7. doi:10.1201/9780203020647.
  • Sadrnezhaad SK, Selahi AR. Effect of mechanical alloying and sintering on Ni–Ti powders. Mater Manuf Processes. 2004;19(3):475–486. doi:10.1081/AMP-120038656.
  • Neikov OD, Yefimov NA. Chapter 9: nanopowders. In: Handbook of non-ferrous metal powders. Elsevier Ltd.; 2019. p. 271–311. doi:10.1016/B978-0-08-100543-9.00009-9
  • Suryanarayana C, Al-Joubori AA, Wang Z. Nanostructured materials and nanocomposites by mechanical alloying: an overview. Met Mater Int. 28: 2022: 41–53. doi:10.1007/s12540-021-00998-5.
  • Shi X, Nguyen TA, Suo Z, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coat Technol. 2009;204(3):237–245. doi:10.1016/j.surfcoat.2009.06.048.
  • Dwivedi SP, Saxena A, Sharma S, et al. Effect of ball-milling process parameters on mechanical properties of Al/Al2O3/collagen powder composite using statistical approach. J Mater Res Technol. 2021;15:2918–2932. doi:10.1016/j.jmrt.2021.09.082.
  • Nobuki T, Crivello JC, Cuevas F, et al. Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. Int J Hydrogen Energy. 2019;44(21):10770–10776. doi:10.1016/j.ijhydene.2019.02.203.
  • Pradeep NB, Hegde MR, Patel GM, et al. Synthesis and characterization of mechanically alloyed nanostructured ternary titanium based alloy for bio-medical applications. J Mater Res Technol. 2022;16:88–101. doi:10.1016/j.jmrt.2021.11.101.
  • Sun DZ, Cheng LZ, Zhang YM, et al. Calorimetry study of Ni50Ti50 ball milled powders. J Alloys Compd. 1992;186(1):33–35. doi:10.1016/0925-8388(92)90617-I.
  • Bolokang AS, Mathabathe MN, Mathebula C, et al. Thermal analysis and morphology of the ball-milled Ti-Ni powder. Mater Today Proc. 2021;38:503–507. doi:10.1016/j.matpr.2020.02.351.
  • Boldrick MS, Wagner CN. The structure of equiatomic NiTi, CuTi, NiZr and CuZr prepared by mechanical alloying. Mat Sci Eng A. 1991;134:872–875. doi:10.1016/0921-5093(91)90880-V.
  • Zhao X, Ma L, Gou Y, et al. Structure, morphology and hydrogen desorption characteristics of amorphous and crystalline Ti–Ni alloys. Mat Sci Eng A. 2009;516(1-2):50–53. doi:10.1016/j.msea.2009.04.015.
  • Ghadimi M, Shokuhfar A. Effects of mechanical alloying on microstructure and microhardness of nanocrystalline NiTi shape memory alloy. Int J Adv Design Manuf Technol. 2012;5(5):25–29.
  • Takasaki A. Mechanical alloying of the Ti–Ni system. Phys Status Solidi A. 1998;169(2):183–191.doi:10.1002/(SICI)1521-396X(199810)169:2<183::AID-PSSA183>3.0.CO;2-N.
  • Gu YW, Goh CW, Goi LS, et al. Solid state synthesis of nanocrystalline and/or amorphous 50Ni–50Ti alloy. Mat Sci Eng A. 2005;392(1-2):222–228. doi:10.1016/j.msea.2004.09.025.
  • Drenchev B, Spassov T. Electrochemical hydriding of amorphous and nanocrystalline TiNi-based alloys. J Alloys Compd. 2007;441(1-2):197–201. doi:10.1016/j.jallcom.2006.09.071.
  • Mousavi T, Abbasi MH, Karimzadeh F. Thermodynamic analysis of NiTi formation by mechanical alloying. Mater Lett. 2009;63(9-10):786–788. doi:10.1016/j.matlet.2009.01.017.
  • Rostami A, Bagheri GA, Sadrnezhaad SK. Microstructure and thermodynamic investigation of Ni Ti system produced by mechanical alloying. Physica B. 2019;552:214–220. doi:10.1016/j.physb.2018.10.015.
  • Karolus M, Panek J. Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment. J Alloys Compd. 2016;658:709–715.doi:10.1016/j.jallcom.2015.10.286.
  • Sadeghi AR, Mostajabodaveh H, Babakhani A, et al. Effects of milling and heat treatment on the synthesis of NiTi powders. J Wuhan Univ Technol Mater Sci Ed. 2017;32(5):1156–1162. doi:10.1007/s11595-017-1725-4.
  • Amini R, Alijani F, Ghaffari M, et al. Formation of B19′, B2, and amorphous phases during mechano-synthesis of nanocrystalline NiTi intermetallics. Powder Technol. 2014;253:797–802.doi:10.1016/j.powtec.2013.12.029.
  • Verdian MM, Salehi M, Raeissi K. Synthesis of amorphous/nanocrystalline Ni–Ti powders by using low energy mechanical alloying. Int J Mod Phys B. 2010;24(10):1261–1269. doi:10.1142/S0217979210055251.
  • SGTE – SGTE. Alloy phase diagrams: Ni-Ti [Internet] Canada: Scientific Group Thermodata Europe; 2017 [cited 2022 Mar 10]. Available from: https://www.crct.polymtl.ca/fact/documentation/SGTE2017_Figs.htm.
  • Cullity BD. Elements of X-ray diffraction 2nd edition. Ch4. Massachusetts: Addison Wexley Co. Inc. USA; 1978. p. 107–143.
  • Epp J. Chapter 4: X-ray diffraction (XRD) techniques for materials characterization. In: Hübschen Gerhard, Altpeter Iris, Tschuncky Ralf, Herrmann Hans-Georg, editors. Materials characterization using nondestructive evaluation (NDE) methods. Sawston, UK: Woodhead Publishing. Elsevier Ltd; 2016. p. 81–124.
  • Rivera-Olvera JN, Acevedo Martínez J, Hernández Herrera H, et al. Microstructural characterization and thermodynamic analysis of MoZn produced by mechanical alloying. J Alloys Compd. 2017;696:329–337. doi:10.1016/j.jallcom.2016.10.052.
  • Su D. Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ. 2017;2(2):70–83. doi:10.1016/j.gee.2017.02.001.
  • Chen Z, Qin S, Shang J, et al. Size effects of NiTi nanoparticle on thermally induced martensitic phase transformation. Intermetallics. 2018;94:47–54. doi:10.1016/j.intermet.2017.12.012.
  • Perepezko JH, Kimme KE, Hebert RJ. Deformation alloying and transformation reactions. J Alloys Compd. 2009;483(1-2):14–19. doi:10.1016/j.jallcom.2008.12.152.
  • Russell AM. Ductility in intermetallic compounds. Adv Eng Mater. 2003;5(9):629–639. doi:10.1002/adem.200310074.
  • Herrera-Alonso JM, Marand E, Little JC, et al. Transport properties in polyurethane/clay nanocomposites as barrier materials: effect of processing conditions. J Memb Sci. 2009;337(1-2):208–214. doi:10.1016/j.memsci.2009.03.045.
  • Malin F, Znoj B, Šegedin U, et al. Polyacryl–nanoclay composite for anticorrosion application. Prog Org Coat. 2013;76(10):1471–1476. doi:10.1016/j.porgcoat.2013.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.