Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 62, 2023 - Issue 3
250
Views
6
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Influence of hybrid pin profile on enhancing microstructure and mechanical properties of AA5052/SiC surface composites fabricated via friction stir processing

Influence du profil d'axe hybride sur l'amélioration de la microstructure et des propriétés mécaniques des composites de surface AA5052/SiC fabriqués par traitement par friction–malaxage

& ORCID Icon
Pages 426-439 | Received 17 Jun 2022, Accepted 08 Aug 2022, Published online: 25 Aug 2022

References

  • Karpasand F, Abbasi A, Ardestani M. Effect of amount of TiB2 and B4C particles on tribological behavior of Al7075/B4C/TiB2 mono and hybrid surface composites produced by friction stir processing. Surf Coatings Technol. 2020;390:125680), doi:10.1016/j.surfcoat.2020.125680.
  • Rathee S, Maheshwari S, Siddiquee AN, et al. Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing. Def Technol. 2017;13:86–91. doi:10.1016/j.dt.2016.11.003.
  • Manikandan R, Arjunan TV, Nath AR. Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite. Compos Part B Eng. 2020;183:107668), doi:10.1016/j.compositesb.2019.107668.
  • Singh G, Goyal S. Microstructure and mechanical behavior of AA6082-T6/SiC/B 4 C-based aluminum hybrid composites. Part Sci Technol. 2018;36:154–161. doi:10.1080/02726351.2016.1227410.
  • Kumar K, Mondal S. Fabrication and characterisation of carbon nanotube reinforced copper matrix nanocomposites. Can Metall Q. 2022;61:77–84. doi:10.1080/00084433.2021.2023284.
  • Olhan S, Khatkar V, Behera BK. Impact behavior of long glass fibre reinforced aluminum metal matrix composite prepared by friction stir processing technique for automotive. J Compos Mater. 2022;56:2157–2167. doi:10.1177/00219983221092012.
  • Ramanathan A, Krishnan PK, Muraliraja R. A review on the production of metal matrix composites through stir casting – furnace design,: properties, challenges, and research opportunities. J Manuf Process. 2019;42:213–245. doi:10.1016/j.jmapro.2019.04.017.
  • Dinaharan I, Akinlabi ET, Hattingh DG. Microstructural characterization and sliding wear behavior of Cu/TiC copper matrix composites developed using friction stir processing. Metallogr Microstruct Anal. 2018;7:464–475. doi:10.1007/s13632-018-0455-0.
  • Dinaharan I, Kalaiselvan K, Akinlabi ET, et al. Microstructure and wear characterization of rice husk ash reinforced copper matrix composites prepared using friction stir processing. J Alloys Compd. 2017;718:150–160. doi:10.1016/j.jallcom.2017.05.117.
  • Parumandla N, Adepu K. Effect of tool shoulder geometry on fabrication of Al/Al 2 O 3 surface nano composite by friction stir processing. Part Sci Technol. 2020;38:121–130. doi:10.1080/02726351.2018.1490361.
  • Sachinkumar NS, Chakradhar D. Characterization and evaluation of joint properties of FSWed AA6061/SiC/FA hybrid AMCs using different tool Pin profiles. Trans Indian Inst Met. 2020;73:2269–2279. doi:10.1007/s12666-020-02035-2.
  • Moharami A, Razaghian A, Babaei B, et al. Role of Mg 2 Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg 2 Si composite. J Compos Mater. 2020;54:4035–4057. doi:10.1177/0021998320925528.
  • Kumar VM, Padamanaban G, Balasubramanian V. Effect of tool Pin profile on microstructure and hardness of magnesium alloy Zk60/SiCp surface composites fabricated by friction stir processing. J Test Eval. 2019;47:20180322), doi:10.1520/JTE20180322.
  • Eftekharinia H, Amadeh AA, Khodabandeh A, et al. Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Met. 2020;39:429–435. doi:10.1007/s12598-016-0691-x.
  • Shojaeefard MH, Akbari M, Khalkhali A, et al. Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B 4 C/aluminum composites. Proc Inst Mech Eng Part L J Mater Des Appl. 2018;232:637–651. doi:10.1177/1464420716642471.
  • Elangovan K, Balasubramanian V. Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A. 2007;459:7–18. doi:10.1016/j.msea.2006.12.124.
  • Mastanaiah P, Sharma A, Reddy GM. Role of hybrid tool pin profile on enhancing welding speed and mechanical properties of AA2219-T6 friction stir welds. J Mater Process Technol. 2018;257:257–269. doi:10.1016/j.jmatprotec.2018.03.002.
  • Jamalian HM, Eskandar MT, Chamanara A, et al. An artificial neural network model for multipass tool pin varying FSW of AA5086-H34 plates reinforced with Al2O3 nanoparticles and optimization for tool design insight. CIRP J Manuf Sci Technol. 2021;35:69–79. doi:10.1016/j.cirpj.2021.05.007.
  • Rathee S, Maheshwari S, Siddiquee AN, et al. Investigating the effects of SiC particle sizes on microstructural and mechanical properties of AA5059/SiC surface composites during multipass FSP. Silicon. 2019;11:797–805. doi:10.1007/s12633-018-9958-1.
  • Rana H, Badheka V. Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite. J Mater Process Technol. 2018;255:795–807. doi:10.1016/j.jmatprotec.2018.01.020.
  • Mosallaee M, Daneshgar A. Evaluation of microstructure and tribological behavior of FS-processed Al/SiC-BNh hybrid composite on the Al-1050 substrate. Mater Today Commun. 2022;31:103304), doi:10.1016/j.mtcomm.2022.103304.
  • Reddy KV, Naik RB, Reddy GM, et al. Damping property of AA6061/SiCp surface composites developed through friction stir processing. J Mater Eng Perform. 2022;31:75–81. doi:10.1007/s11665-021-06201-5.
  • Deore HA, Bhardwaj A, Rao AG, et al. Consequence of reinforced SiC particles and post process artificial ageing on microstructure and mechanical properties of friction stir processed AA7075. Def Technol. 2020;16:1039–1050. doi:10.1016/j.dt.2019.12.001.
  • Zhang YN, Cao X, Larose S, et al. Review of tools for friction stir welding and processing. Can Metall Q. 2012;51:250–261. doi:10.1179/1879139512Y.0000000015.
  • Sarvaiya J, Singh D. Design and development of robust fixture to perform friction stir welding/processing on conventional vertical milling machine. In: Kumar S, Rajurkar KP, editors. Advances in manufacturing systems. Singapore: Springer Nature; 2021. p. 83–94. doi:10.1007/978-981-33-4466-2_9.
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Reports. 2005;50:1–78. doi:10.1016/j.mser.2005.07.001.
  • Akbari M, Khalkhali A, Keshavarz SME, et al. Investigation of the effect of friction stir processing parameters on temperature and forces of Al–Si aluminum alloys. Proc Inst Mech Eng Part L J Mater Des Appl. 2018;232:213–229. doi:10.1177/1464420715621337.
  • Marzbanrad J, Akbari M, Asadi P, et al. Characterization of the influence of tool Pin profile on microstructural and mechanical properties of friction stir welding. Metall Mater Trans B. 2014;45:1887–1894. doi:10.1007/s11663-014-0089-9.
  • Elangovan K, Balasubramanian V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Des. 2008;29:362–373. doi:10.1016/j.matdes.2007.01.030.
  • Hosseini SA, Ranjbar K, Dehmolaei R, et al. Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing. J Alloys Compd. 2015;622:725–733. doi:10.1016/j.jallcom.2014.10.158.
  • Thilagham KT, Sunilkumar D, Muthukumaran S. EBSD study on Two modes of metal flow transfer in friction stir weldment. Trans Indian Inst Met. 2021;74:331–339. doi:10.1007/s12666-020-02126-0.
  • Dinaharan I, Zhang S, Chen G, et al. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing. Mater Sci Eng A. 2020;772:138793), doi:10.1016/j.msea.2019.138793.
  • McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater. 2008;58:349–354. doi:10.1016/j.scriptamat.2007.09.064.
  • Girish G, Anandakrishnan V. Influence of heat treatment on the microstructure,: mechanical and tribological performances of particle reinforced aluminum matrix surface composite fabricated through friction stir processing. Part Sci Technol. 2022;0:1–16. doi:10.1080/02726351.2021.2024929.
  • Jain VKS, Yazar KU, Muthukumaran S. Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J Alloys Compd. 2019;798:82–92. doi:10.1016/j.jallcom.2019.05.232.
  • Su JQ, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A. 2005;405:277–286. doi:10.1016/j.msea.2005.06.009.
  • Anwar J, Khan M, Farooq MU, et al. Effect of B4C and CNTs’ nanoparticle reinforcement on the mechanical and corrosion properties in rolled Al 5083 friction stir welds. Can Metall Q. 2022. doi:10.1080/00084433.2022.2054586.
  • Sivanesh PM, Elaya PA, Arulvel S. Development of multipass processed AA6082/SiCp surface composite using friction stir processing and its mechanical and tribology characterization. Surf Coatings Technol. 2020;394:125900), doi:10.1016/j.surfcoat.2020.125900.
  • Dolatkhah A, Golbabaei P, Givi MB, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37:458–464. doi:10.1016/j.matdes.2011.09.035.
  • Sato YS, Urata M, Kokawa H, et al. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater Sci Eng A. 2003;354:298–305. doi:10.1016/S0921-5093(03)00008-X.
  • Khorrami MS, Kazeminezhad M, Kokabi AH. The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum. Mater Sci Eng A. 2014;602:110–118. doi:10.1016/j.msea.2014.02.067.
  • Cao X, Shi Q, Liu D, et al. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: evaluation of microstructural, mechanical and tribological behaviors. Compos Part B Eng. 2018;139:97–105. doi:10.1016/j.compositesb.2017.12.001.
  • Jamali A, Mirsalehi SE. Production of AA7075/ZrO2 nanocomposite using friction stir processing: metallurgical structure,: mechanical properties and wear behavior. CIRP J Manuf Sci Technol. 2022;37:55–69. doi:10.1016/j.cirpj.2021.12.008.
  • Khodabakhshi F, Gerlich AP, Švec P. Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing. Mater Sci Eng A. 2017;698:313–325. doi:10.1016/j.msea.2017.05.065.
  • Bhoi NK, Singh H, Pratap S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles – A review. J Compos Mater. 2020;54:813–833. doi:10.1177/0021998319865307.
  • Patel KS, Singh VP, Kumar D, et al. Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC nanoparticle through friction stir processing. Mater Sci Eng B. 2022;276:115476), doi:10.1016/j.mseb.2021.115476.
  • Sharifitabar M, Sarani A, Khorshahian S, et al. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Mater Des. 2011;32:4164–4172. doi:10.1016/j.matdes.2011.04.048.
  • Sharma DK, Patel V, Badheka V, et al. Fabrication of hybrid surface composites AA6061/(B4C + MoS2) via friction stir processing. J Tribol. 2019;141:1–10. doi:10.1115/1.4043067.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Microstructure and texture development during friction stir processing of Al-Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A. 2014;605:108–118. doi:10.1016/j.msea.2014.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.