Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 62, 2023 - Issue 3
2,364
Views
3
CrossRef citations to date
0
Altmetric
Mineral Processing

Temperature and climate-induced fluctuations in froth flotation: an overview of different ore types

, &
Pages 511-548 | Received 14 Jul 2022, Accepted 18 Sep 2022, Published online: 30 Sep 2022

References

  • Fuerstenau M, Jameson G, Yoon R. Froth flotation: a century of innovation. Littleton (CO): Society for Minning, Metallurgy, and Exploration; 2007.
  • Brito-Parada PR, Neethling SJ, Cilliers JJ. CFD study of liquid drainage in flotation foams. In: Computer aided chemical engineering. Elsevier; 2012. p. 1143–1147. DOI:10.1016/B978-0-444-59520-1.50087-7
  • Wang H, Zhang Y, Wang C. Surface modification and selective flotation of waste plastics for effective recycling—a review. Sep Purif Technol. 2019;226:75–94. DOI:10.1016/j.seppur.2019.05.052
  • Yarar B. Flotation. In: Kirk-Othmer encyclopedia of chemical technology. Wiley; 2000. DOI:10.1002/0471238961.0612152025011801.a01
  • Kyzas GZ, Matis KA. Flotation in water and wastewater treatment. Processes. 2018;6:116. DOI:10.3390/pr6080116
  • Hughes J, Cowper-heays K, Olesson E, et al. Impacts and implications of climate change on wastewater systems: a New Zealand perspective. Clim Risk Manag. 2020:100262. DOI:10.1016/j.crm.2020.100262
  • Choung J, Walker J, Xu Z, et al. Effect of temperature on the stability of froth formed in the recycle process water of oil sands extraction. Can J Chem Eng. 2008;82:801–806. DOI:10.1002/cjce.5450820419
  • Schramm LL, Stasiuk EN, Yarranton H, et al. Temperature effects from the conditioning and flotation of bitumen from oil sands in terms of oil recovery and physical properties. J Can Pet Technol. 2003;42. DOI:10.2118/03-08-05
  • Bhattacharya S, Pascoe RD. Effect of temperature on coal flotation performance – a review. Miner Process Extr Metall Rev. 2005;26:31–61. DOI:10.1080/08827500490477586
  • Wang C, Wang H, Liu Y. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry. Waste Manag. 2015;35:42–47. DOI:10.1016/j.wasman.2014.09.025
  • Kökkılıç O, Mohammadi-jam S, Marion C, et al. Separation of plastic wastes using froth flotation – an overview. Adv Colloid Interface Sci. 2022:89. DOI:10.1016/j.cis.2022.102769
  • Downing JA. The effects of temperature and pH in flotation deinking of ultraviolet-cured inks. Pap Eng Sr Theses. 1984:124.
  • El-khalek MAA. Performance of different surfactants in deinking flotation process. J Ore Dress. 2011;13:15–21.
  • Lin IJ. The effect of seasonal variations in temperature on the performance of mineral processing plants. Miner Eng. 1989;2:47–54. DOI:10.1016/0892-6875(89)90064-2
  • Mikhlin Y, Karacharov A, Vorobyev S, et al. Towards understanding the role of surface gas nanostructures: effect of temperature difference pretreatment on wetting and flotation of sulfide minerals and Pb-Zn ore. Nanomaterials. 2020;10:1–12. DOI:10.3390/nano10071362
  • Janishevskaja E, Gershenkop A, Evdokimova G, et al. Изучение развития и функционирования микроорганизмов в процессе флотации сульфидных медно-никелевых руд на обогатительной фабрике АО“Кольская ГМК” [Investigation of microorganisms in the process of Cu-Ni flotation at Kolskaja plant]. In: VI всероссийская Научная Конференция Экологические Проблемы Северных Регионов и Пути Их Решения. Apatity: Kola Science Center of the Russian Academy of Sciences; 2016. p. 308–311. Russian.
  • Liu W, Moran CJ, Vink S. A review of the effect of water quality on flotation. Miner Eng. 2013;53:91–100. DOI:10.1016/j.mineng.2013.07.011
  • Delevingne L, Glazener W, Grégoir L, et al. Climate risk and decarbonization: what every mining CEO needs to know; 2020. [cited 2022 Sep 11]. Available from: https://www.mckinsey.com/business-functions/sustainability/our-insights/climate-risk-and-decarbonization-what-every-mining-ceo-needs-to-know
  • Jowitt SM, Mudd GM, Thompson JFH. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun Earth Environ. 2020;1:1–8. DOI:10.1038/s43247-020-0011-0
  • MarketsandMarkets Research Private Ltd. Froth flotation equipment market by machine type (cell-to-cell flotation, and free-flow flotation), component, application (mineral & ore processing, wastewater treatment, and paper recycling), region – global forecast to 2025; 2020. Available from: https://www.marketsandmarkets.com/Market-Reports/froth-flotation-equipment-market-186447862.html
  • Global Market Insights. Flotation reagents market size, industry analysis report, regional outlook, application development potential, price trends, competitive market share & forecast, 2022–2028; 2021. Available from: https://www.gminsights.com/industry-analysis/flotation-reagents-market
  • Nikolaev AA, Konyrova A, Goryachev BE. Wetting of sphalerite, chalcopyrite and pyrite in treatment with sulfhydryl collectors in saltish and Sea water. J Min Sci. 2020;56:654–662. DOI:10.1134/S1062739120046946
  • Pecina-Trevino ET, Uribe-Salas A, Nava-Alonso F, et al. On the sodium-diisobutyl dithiophosphinate (aerophine 3418A) interaction with activated and unactivated galena and pyrite. Int J Miner Process. 2003;71:201–217. DOI:10.1016/S0301-7516(03)00059-0
  • An D. Improved flotation of bastnaesite and chalcopyrite [PhD thesis]. Department of Mining and Geological Engineering, University of Arizona; 2017.
  • Li F, Zeng X. 攀西地区氟碳 矿速矿工艺研究 [Beneficiation technology for bastnaesite in Panxi area. J Shanghai Second Polytech Univ. 1999;1:1–7. Chinese.
  • Smith G, Smadi R. Surfactant compositions containing alkoxylated amines. US patent no. 6,617,303 B1. 2003.
  • Chen C, Zhu H, Sun W, et al. Synergetic effect of the mixed anionic/non-ionic collectors in low temperature flotation of scheelite. Minerals. 2017;7. DOI:10.3390/min7060087
  • Levanaho J, Hoover K, Spence C, et al. Effect of pulp temperature on copper and gold collectors at Hudson Bay Mining and Smelting. In: 37th Annu. Meet. Can. Miner. Process.; 2005. p. 481–496.
  • Marais P. Some practical considerations in the design and operation of a plant for the differential flotation of mixed sulphides, especially copper and zinc. J South African Inst Min Metall. 1980;80:385–394.
  • Zhu H, Qin W, Chen C, et al. Interactions between sodium oleate and polyoxyethylene ether and the application in the low-temperature flotation of scheelite at 283 K. J Surfactants Deterg. 2016;19:1289–1295. DOI:10.1007/s11743-016-1864-1
  • Makhotla N, Hearn S, Boskovic S. The Huntsman approach to flotation frothers. In: 8th South African Base Met. Conf. Livingstone: Southern African Institute of Mining and Metallurgy; 2015. p. 129–140.
  • Liu X, Li Z, Li Z, et al. 黄铁矿低温浮选试验及机理分析 [Study and mechanism analysis on the flotation of pyrite in low temperature. Conserv Util Miner Resour. 2019;4. Chinese. DOI:10.13779/j.cnki
  • Celanese Corp. MIBC: methyl isobutyl carbinol. Dallas; 2013.
  • Wark W, Cox A. Principles of flotation, VI – influence of temperature on effect of copper sulfate, alkalies and sodium cyanide on adsorption of xanthates at mineral surfaces. Australasian Institute of Mining and Metallurgy; 1938.
  • Kubota T, Yoshida M, Hashimoto S, et al. 黄銅鉱および方鉛鉱の浮選分離における温度の影響に関する基礎研究 [Fundamental study on the effect of pulp temperature in copper-lead bulk differential flotation]. 日本鉱業会誌 [J Japan Min Assoc]. 1974;90:641. Japanese.
  • Li C, Hui Y. 安徽李楼铁矿强磁选尾矿反浮选温度试验 [Temperature test of reverse flotation for high intensity magnetic separation tailings of Anhui Lilou iron ore]. 现代矿业 [Mod Min]. 2013;534:112–113. Chinese.
  • Ng WS, Sonsie R, Forbes E, et al. Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector. Miner Eng. 2015;77:64–71. DOI:10.1016/j.mineng.2015.02.013
  • Cao Z, Qiu P, Wang S, et al. Benzohydroxamic acid to improve iron removal from potash feldspar ores. J Cent South Univ. 2018;25:2190–2198. DOI:10.1007/s11771-018-3907-4
  • Li Q, Yin WZ, Ma YQ, et al. 含镁碳酸盐矿物溶解度 模拟计算及对浮选过程的影响 [Simulation and effects on flotation of solubility of magnesium carbonate minerals]. J Northeast Univ Nat Sci. 2011;32:1348–1351. Chinese.
  • Baranovskii N. Flotation beneficiation of Savinsk magnesites. Refractories. 1980;21:349–352.
  • Baranovskii N. Flotation beneficiation of Semibratsk magnesite. Refractories. 1968;8:740–741.
  • Wang X, Miller JD, Cheng F, et al. Potash flotation practice for carnallite resources in the Qinghai Province, PRC. Miner Eng. 2014;66:33–39. DOI:10.1016/j.mineng.2014.04.012
  • Zhang Y. 萤石低温浮选捕收剂的研究 [Collectors for low temperature flotation of fluorite: a study]. Min Metall Eng. 1995;15:25–27. Chinese.
  • Samatova L, Kienko L, Shestovets V, et al. Промышленное внедрение низкотемпературной флотации флюорита с применением Аспарала Ф и собирательных смесей на его основе в комплексе с модификатором [Industrial testing of low-temperature fluorite flotation with asparal F mixtures]. Горный Информационно-Аналитический Бюллетень [Min Informational Anal Bull]. 2007;12:308–318. Russian.
  • Zhylev A, Pihovkin L, Rykin V, et al. Смазачно-охлаждающая жидкость для механической обработки металлов [Cutting fluid for metal machining]. USSR patent no. SU777053A1. 1979. Russian.
  • Chen H, Ren Z, Gao H, et al. 石油磺酸钠低温浮选石英型萤石的试验研究 [Experimental study on low-temperature flotation of quartz-type fluorite with petroleum sodium sulfonate]. Conserv Util Miner Resour. 2020;40:135–139. Chinese.
  • Corpas-Martínez JR, Pérez A, Navarro-Domínguez R, et al. Testing of new collectors for concentration of fluorite by flotation in pneumatic (modified hallimond tube) and mechanical cells. Minerals. 2020;10. DOI:10.3390/min10050482
  • Zhou Q, Lu S. 萤石浮选增效剂及其应用 [Fatty acid booster and its application in fluorite flotation]. 化工矿山技术 [Chem Min Technol]. 1995;24:22–25. Chinese.
  • Jong K, Paek I, Kim Y, et al. Flotation mechanism of a novel synthesized collector from Evodiaefructus onto fluorite surfaces. Miner Eng. 2020;146:106017. DOI:10.1016/j.mineng.2019.106017
  • Zheng G, Sun T, Kou J, et al. 新型捕收剂EV-1的合成及其在磷矿选矿中的应用 [Synthesis of collector (EV-1) and its application in flotation of apatite ores]. 化工矿物与加工 [IM P]. 2016;2:4–8. Chinese.
  • Li D, Leng X, Qin F. 宜昌磷矿低温捕收剂研究 [Low temperature collector for Yichang phosphate rock]. 化工矿物与加工 [IM P]. 2010;10:1–4. Chinese.
  • Su F, Hanumantha Rao K, Forssberg KSE, et al. The influence of temperature on the kinetics of apatite flotation from magnetite fines. Int J Miner Process. 1998;54:131–145. DOI:10.1016/S0301-7516(98)00021-0
  • Smolko-Schvarzmayr N, Klingberg A, Nordberg H. Use of branched alcohols and alkoxylates thereof as secondary collectors. US patent no. 2017/0252753 A1. 2017.
  • Xu J. 新浦磷矿低温捕收剂的选择 [Selection of collectors in Xinpu phosphate mine at lower temperature]. 化工矿物与加工 [IM P]. 2005;12:21–23, 26. Chinese.
  • Anderson CD. Improved understanding of rare earth surface chemistry and its application to froth flotation [PhD thesis]. Metallurgical and Materials Engineering, Colorado School of Mines; 2015.
  • Pavez O, Peres AEC. Effect of sodium metasilicate and sodium sulphide on the floatability of monazite-zircon-rutile with oleate and hydroxamates. Miner Eng. 1993;6:69–78. DOI:10.1016/0892-6875(93)90164-I
  • Chen C, ling Zhu H, qing Qin W, et al. Improving collecting performance of sodium oleate using a polyoxyethylene ether in scheelite flotation. J Cent South Univ. 2018;25:2971–2978. DOI:10.1007/s11771-018-3967-5
  • Wills B, Finch J. Wills’ mineral processing technology; 2016. DOI:10.1115/DSCC2013-3715
  • The Mining Association of Canada. The State of Canada’s mining industry; 2019. p. 104. Available from: https://mining.ca/documents/facts-and-figures-2019/
  • Calvo G, Mudd G, Valero A, et al. Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? Resources. 2016;5:1–14. DOI:10.3390/resources5040036
  • Rötzer N, Schmidt M. Decreasing metal ore grades – is the fear of resource depletion justified? Resources. 2018;7. DOI:10.3390/resources7040088
  • Marois J-S, Downey D, Matton G, et al. Resolving detrimental seasonal effect on the flotation processes at Niobec. In: 50th Annu. Camadian Miner. Process. Conf.; 2018. p. 106–118.
  • Xu M, Wilson S. Investigation of seasonal metallurgical shift at Inco’s Clarabelle mill. Miner Eng. 2000;13:1207–1218. DOI:10.1016/s0892-6875(00)00105-9
  • Nesset JE, Gomez CO, Finch JA, et al. The use of gas dispersion measurements to improve flotation performance. In: 34th Annu. Meet. Can. Miner. Process.; 2002. p. 361–383.
  • Malafarina L, Deredin C. Sudbury integrated nickel operations Strathcona mill [PowerPoint slides]. 53rd Annual Canadian Mineral Processors’ Conference; 2021.
  • O’Connor CT, Dunne RC, de Sousa AMRB. Effect of temperature on the flotation of pyrite. J South African Inst Min Metall. 1984;84:389–394.
  • Lin IJ, Chapman R. The effect of seasonal variations in temperature on the performance of JCI mineral plants. JCI Internal Report; 1982.
  • Natural Resources Canada. The Canadian minerals and metals plan, Toronto; 2019. Available from: https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/CMMP/CMMP_The_Plan-EN.pdf
  • Lafitte G. Spoiling Tibet: China and resource nationalism on the roof of the world. London: Zed Books; 2013.
  • Gouvernment du Quebec. Plan Nord. Building Northern Quebec together. The project of a generation. Québec: Ministère des ressources naturelles et de la faune; 2011. Available from: https://numerique.banq.qc.ca/patrimoine/details/52327/2420759?docpos=19
  • Boyd R, Bjerkgård T, Nordahl B, et al. Mineral resources in the Arctic. Trondheim: Geological Survey of Norway; 2016.
  • Mekis É, Vincent LA, Shephard MW, et al. Observed trends in severe weather conditions based on Humidex, Wind Chill, and Heavy Rainfall Events in Canada for 1953–2012. Atmos Ocean. 2015;53:383–397. DOI:10.1080/07055900.2015.1086970
  • Dinçer İ, Zamfirescu C. Appendix B thermophysical properties of water; 2015. DOI:10.1002/9781118534892.app2
  • C. V. Umipig, E.E. Israel, G.G. Hutalle, S.R. Williams, Canatuan Cu/Zn flotation metallurgy – dealing with zinc pre-activation. In: 44tn Annu. Meet. Can. Miner. Process.; 2012. p. 187–195.
  • Yianatos J. Industrial flotation process modelling, a chemical engineering approach. In: Mohanty JN, Biswal SK, Reddy PSR , et al., editors. Role of chemical engineering in processing of minerals and materials. Bhubaneswar: Allied; 2003. p. 34–45.
  • van’t Hoff JH. Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen [The role of osmotic pressure in the analogy between solutions and gases]. Zeitschrift Für Phys Chemie [J Phys Chem]. 1887. German. DOI:10.1515/zpch-1887-0151
  • Rao SR. Surface chemistry of froth flotation. Springer; 2004. DOI:10.1007/978-1-4757-4302-9
  • Cook M, Last A. Fluorite flotation II. Bull. Univ. Utah. Bulletin No. 47. 40; 1950.
  • Arrhenius S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte [About the heat of dissociation and the influence of temperature on the degree of dissociation of the electrolytes]. Zeitschrift Für Phys Chemie [J Phys Chem]. 1889. German. DOI:10.1515/zpch-1889-0408
  • Mingulina E, Maslennikova G, Korovin N, et al. Курс общей химии [General chemistry course]. Moscow: Vysshaya Shkola; 1990. Russian.
  • Xu L, Hu Y, Wu H, et al. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Sep Purif Technol. 2016;169:33–42. DOI:10.1016/j.seppur.2016.06.005
  • Drzymala J, Kliszowska K, Ratajczak T. Theoretical and experimental aspects of influence of temperature on kinetics of carbonaceous materials froth flotation. Miner Process Extr Metall Rev. 2021;00:1–5. DOI:10.1080/08827508.2021.1883012.
  • Du B, Zhang Z, Grubner S, et al. Temperature-dependent estimation of Gibbs energies using an updated group-contribution method. Biophys J. 2018;114:2691–2702. DOI:10.1016/j.bpj.2018.04.030
  • Marsden D. The effect of pH value, temperature and density on the kinematic viscosity of some South African gold mine slurries. J South African Inst Min Metall. 1962;62:391–398.
  • Kawatra S, Eisele T, Zhang D, et al. Effects of temperature on hydrocyclone efficiency. Int J Miner Process. 1988;23:205–210.
  • Albrecht T, Addai-Mensah J, Fornasiero D. Critical copper concentration in sphalerite flotation: effect of temperature and collector. Int J Miner Process. 2016;146:15–22. DOI:10.1016/j.minpro.2015.11.010
  • Dassey A, Theegala C. Optimizing the air dissolution parameters in an unpacked dissolved air flotation system. Water (Basel). 2012;4:1–11. DOI:10.3390/w4010001
  • Faust SD, Aly OM. Chemistry of water treatment. 2nd ed. Boca Raton (FL): Taylor & Francis; 1998.
  • Manouchehri HR, Johansson B, Ikumapayi F. Effect of temperature in flotation of Zn from massive sulfide ores. In: 26th Int. Miner. Process. Congr. IMPC 2012 Innov. Process. Sustain. Growth – Conf. Proc.; 2012. p. 3227–3238.
  • Radtke DB, White AF, Davis JV, et al. Dissolved oxygen. In: U.S. Geol. Surv. TWRI B. 9; 1998. p. 1–27.
  • Zhang W. Evaluation of effect of viscosity changes on bubble size in a mechanical flotation cell. Trans Nonferrous Met Soc China Engl Ed. 2014;24:2964–2968. DOI:10.1016/S1003-6326(14)63432-4
  • Kaye GWC, Laby TH. Tables of physical and chemical constants. London: Longmans; 1962.
  • Gray P, Bowyer G, Castle J, et al. Sulphide deposits—their origin and processing. London: Institution of Mining and Metallurgy; 1990. DOI:10.1007/978-94-009-0809-3
  • Schulze HJ. Hydrodynamics of bubble-mineral particle collisions. Miner Process Extr Metall Rev. 1989;5:43–76. DOI:10.1080/08827508908952644
  • Cho Y. Effect of flotation frothers on bubble size and foam stability [Master’s thesis]. Mining and Mineral Process Engineering, The University of British Columbia; 2001.
  • Leite M. Liberation by size reduction, consequences and improvements on flotation kinetics. In: Mavros P, Matis K, editors. Innovations in flotation technology. Thessaloniki: Springer; 1992. p. 149–170.
  • Wills BA, Finch JA. Froth flotation. In: Wills’ mineral processing technology; 2016. p. 265–380. DOI:10.1016/b978-0-08-097053-0.00012-1
  • Tongass National Forest. Quartz Hill molybdenum project mine development: final environmental impact statement; 1989. DOI:10.1017/CBO9781107415324.004
  • Sutherland KL, Wark IW. Principles of flotation. Melbourne: Australasian Institute of Mining and Metallurgy; 1955.
  • Drzymala J. Arrheniusan activation energy of separation for different parameters regulating the process. Physicochem Probl Miner Process. 2018;54:1152–1158. DOI:10.5277/ppmp18146
  • Laskowski JS. Thermodynamic and kinetic flotation criteria. Miner Process Extr Metall Rev. 1989;5:25–41. DOI:10.1080/08827508908952643
  • Lazarov D, Alexandrova L, Nishkov I. Effect of temperature on the kinetics of froth flotation. Miner Eng. 1994;7:503–509. DOI:10.1016/0892-6875(94)90163-5
  • Scheludko A, Toshev BV, Bojadjiev DT. Attachment of particles to a liquid surface (capillary theory of flotation). J Chem Soc Faraday Trans 1 Phys Chem Condens Phases. 1976;72:2815–2828. DOI:10.1039/F19767202815
  • He H, He T, Wang X, et al. 矿浆温度对方铅矿浮选效果的影响及机理研究 [Study on the effect and mechanism of pulp temperature on galena flotation]. Conserv Util Miner Resour. 2020;40:88. Chinese.
  • Princen H, Kiss A. Rheology of foams and highly concentrated emulsions. J Colloid Interface Sci. 1989;128:176–187.
  • Wang L, Li C. A brief review of pulp and froth rheology in mineral flotation. J Chem. 2020. DOI:10.1155/2020/3894542
  • Li C, Runge K, Shi F, et al. Effect of flotation froth properties on froth rheology. Powder Technol. 2016;294:55–65. DOI:10.1016/j.powtec.2016.02.018
  • Shi FN, Zheng XF. The rheology of flotation froths. Int J Miner Process. 2003;69:115–128. DOI:10.1016/S0301-7516(02)00120-5
  • Silverman D, Roseveare WE. An equation relating viscosity and surface tension. J Am Chem Soc. 1932;54:4460. DOI:10.1021/ja01350a505
  • Shaw DJ. Introduction to colloid and surface chemistry. 4th ed Oxford: Elsevier Science; 1992.
  • Yarar B, Kaona J. The critical surface tension of wetting of sulfide minerals. SME-AIME Annu. Meet.; Atlanta; 1983.
  • Yörük S, Smith GW, Finch JA. Critical surface tension of wetting and flotation separation of hydrophobic solids. Sep Sci Technol. 1987;22:1527–1546. DOI:10.1080/01496398708058416
  • Fox HW, Zisman WA. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci. 1950;5. DOI:10.1016/0095-8522(50)90044-4
  • Guancheng J. Evaluation methods and influencing factors of gas wettability; 2018. doi:10.1016/b978-0-12-815150-1.00002-x
  • Gayle J, Smelley A. Effects of temperature variations on contact angles for coal and related substances. Washington (DC): U.S. Bureau of Mines; 1960.
  • An D, Zhang J. A study of temperature effect on the xanthate’s performance during chalcopyrite flotation. Miner Eng. 2020;10. DOI:10.3390/min10050426
  • Peng Y, Grano S. Effect of iron contamination from grinding media on the flotation of sulphide minerals of different particle size. Int J Miner Process. 2010;97:1–6. DOI:10.1016/j.minpro.2010.07.003.
  • Rao M, Natarajan K. Electrochemical aspects of grinding media-mineral interaction on sulphide flotation. Bull Mater Sci. 1988;10:411–422.
  • Long T, Chen Y, Shi J, et al. Effect of grinding media on the flotation of copper-activated marmatite. Physicochem Probl Miner Process. 2020;56:229–237. DOI:10.37190/ppmp19100
  • Dunne RC, Kawatra KS, Young CA. SME mineral processing and extractive metallurgy handbook. Englewood (CO): Society for Minning, Metallurgy, and Exploration; 2019.
  • Glembotsky V, Klassen V. Флотационные методы обогащения [Flotation methods of mineral processing]. Moscow: Izd. Nedra; 1981. Russian.
  • Twidle TR, Engelbrecht PC. Developments in the flotation of copper at Black Mountain. J South African Inst Min Metall. 1984;84:164–178.
  • Plaksa N. Совмещение пропарки и селективной флотации медно-молибденовых концентратов [Combination of low-temperature steaming and selective flotation of copper-molybdenum concentrates]. Tsvetnye Met. 1970;43:79–82. Russian.
  • Arustamjan A. Влияние температуры пульпы на показатели цинковой флотации [Pulp temperature influence on zinc flotation performance]. Zap Gorn Instituta [J Min Inst]. 2004;159:140–141. Russian.
  • Zheng L, Du Z, Liu Y. 凡口矿高碱介质中闪锌矿浮选特性研究 [The study on flotation properties of sphalerite in high alkalinity medium in Fankou lead-zinc mine]. Min Metall Eng. 2005;25:37–40. Chinese.
  • Weise K, Schmitz J, Wollmann G. Das Mineral- Anreicherungsverfahren Flotation (Ein Überblick) [The flotation mineral concentration process: an overview]. Karlsruhe: Kernforschungszentrum Karlsruhe GmbH; 1978. German.
  • Taggart A. Handbook of mineral dressing. New York: Wiley; 1945.
  • Roberts J, Deredin C, Paulin J. Process improvement update at Brunswick mine. In: 40th Annu. Meet. Can. Miner. Process.; 2008. p. 27–49.
  • Zhao M. 温度对辉钼矿浮选的影响及其改善途径 [Effect of temperature on molybdenite flotation and improvement approaches]. 国外金属矿选矿 [Guowai Jinshukuang Xuankuang]. 1991;22:86–89. Chinese.
  • Albrecht T, Fornasiero D, Addai-Mensah J. Effect of water temperature on sphalerite flotation. 27th ACSSSC; Roseworthy; 2010.
  • Isshiki J. 余市選鉱場におけるパルプ温度の浮選成績におよぼす影響 [EfPulp temperature produce effects on flotation at Yoichi Mill]. 日本鉱業会誌 [J Japan Min Assoc]. 1961;77:724–728. Japanese.
  • Fernandes I. Influence of temperature on sulphide ore flotation applied to the rougher regrind circuit of the zinc flotation plant of Neves-Corvo mine [PhD thesis]. Civil Engineering and Georesources, University of Lisbon; 2016.
  • Abramov A. Технология переработки и обогащения руд цветных металлов [Technology for processing and concentration of non-ferrous metal ores]. 2nd ed. Moscow: Moscow State Mining University; 2005. Russian.
  • Hamilton IC, Woods R. Surfactant properties of alkyl xanthates. Int J Miner Process. 1986;17:113–120. DOI:10.1016/0301-7516(86)90049-9
  • Klevens HB. Structure and aggregation in dilate solution of surface active agents. J Am Oil Chem Soc. 1953;30:74–80. DOI:10.1007/BF02635002
  • Abramov A. Флотация: реагенты собиратели [Flotation: collector reagents]. 8th ed. Moscow: Izd. Gornaja kniga; 2012. Russian.
  • Abramov A. Флотация: Сульфидные минералы [Flotation: sulfide minerals]. 8th ed. Moscow: Gornaja Kniga; 2013. Russian.
  • Pomianowski A, Leja J. Spectrophotometric study of xanthate and dixanthogen solutions. Can J Chem. 1963;41:2219–2230. DOI:10.1139/v63-322
  • Hidmi L, Edwards M. Role of temperature and pH in Cu(OH)2 solubility. Environ Sci Technol. 1999;33:2607–2610. DOI:10.1021/es981121q
  • Avdohin V. Физико-химические основы оптимизации флотации сульфидов [Physicochemical foundations of sulfide flotation optimization]. In: Symp. Mod. Min. Educ. Sci. Ind. Moscow: Sholokhov Moscow State University; 1996. p. 3–8. Russian.
  • Haung HH, Miller JD. Kinetics and thermochemistry of amyl xanthate adsorption by pyrite and marcasite. Int J Miner Process. 1978;5:241–266.
  • An D, Zhang J. A study of temperature effect on the xanthate’s performance during chalcopyrite flotation. Miner Eng. 2020;10. DOI:10.3390/min10050426
  • Bocharov V. Интенсивные методы рудо- и пульпоподготовки при комплексной переработке сульфидных руд цветных металлов [Intensive methods of ore and pulp conditioning during complex processing of base metal sulphidic ores]. In: Симпозиум Современное Горное Дело Образование, Наука, Промышленность [Symp. Mod. Min. Educ. Sci. Ind.]; 1996. p. 40–45. Russian.
  • Abramov A. Флотация: физико-химическое моделирование процессов [Flotation: physical-chemical modelling of processes]. 6th ed. Moscow: Izd.: Gornaja kniga; 2010. Russian.
  • Mhonde N, Schreithofer N, Corin K, et al. Assessing the combined effect of water temperature and complex water matrices on xanthate adsorption using multiple linear regression. Minerals. 2020;10:1–18. DOI:10.3390/min10090733
  • Bulatovic SM. Chemistry, theory and practice: flotation of sulfide ores; 2007. DOI:10.1016/B978-0-444-53082-0.00023-8
  • Ryan L, Norris R. Chemistry coursebook. 2nd ed. Cambridge: Cambridge University Press; 2014.
  • Reactions of some transition metal ions cobalt, presentation. Knockhardy; 2015. p. 1–8. Available from: http://www.knockhardy.org.uk/sci_htm_files/08tm2.pdf
  • Zanin M, Lambert H, du Plessis CA. Lime use and functionality in sulphide mineral flotation: a review. Miner Eng. 2019;143. DOI:10.1016/j.mineng.2019.105922
  • Rabinovich V, Havin Z. Краткий химический справочник [Brief chemical handbook]. Leningrad: Izd. Himija; 1978. Russian.
  • Ikumapayi FK. Flotation chemistry of complex sulphide ores [Licentiate thesis]. Department of Chemical Engineering and Geosciences, Lulea University of Technology; 2010.
  • Ikumapayi F, Rao K. Recycling process water in complex sulfide ore flotation: effect of calcium and sulfate on sulfide minerals recovery. Miner Process Extr Metall Rev. 2015;36:45–64. DOI:10.1080/08827508.2013.868346
  • Grano SR, Lauder DW, Johnson NW, et al. An investigation of galena recovery problems in the Hilton concentrator of Mount Isa Mines Limited, Australia. Miner Eng. 1997;10:1139–1163. DOI:10.1016/s0892-6875(97)00100-3
  • Wu W, Nancollas GH. Interfacial free energies and crystallization in aqueous media. J Colloid Interface Sci. 1996;182:365–373. DOI:10.1006/jcis.1996.0475
  • Wark W, Cox A. Principles of flotation: an experimental study of the effect of xanthates on contact angles at mineral surfaces. Trans Am Inst Min Metall Eng. 1932;102, Tech. Pub. 461.
  • Guo B, Peng Y, Espinosa-Gomez R. Cyanide chemistry and its effect on mineral flotation. Miner Eng. 2014;66:25–32. DOI:10.1016/j.mineng.2014.06.010
  • McCreedy HH, Honeywell WR. Effect of xanthate in cyanidation. Can Min J. 1966;87:66–69.
  • Orii M. 温 水 浮 選 に つ い て [On warm pulp flotation]. Resour Process Soc Japan. 1961;15:6–17. Japanese.
  • Lukio Co. Mineral processing of complex sulfide ore (Kuroko), Tokyo; 2005. Available from: http://mric.jogmec.go.jp/public/report/1988-04/No2_eng.pdf
  • Rao SR, Finch JA. A review of water re-use in flotation. Miner Eng. 1989;2:65–85. DOI:10.1016/0892-6875(89)90066-6
  • Levay G, Smart RSC, Skinner WM. The impact of water quality on flotation performance. J South African Inst Min Metall. 2001;101:69–75.
  • Muzinda I, Schreithofer N. Water quality effects on flotation: impacts and control of residual xanthates. Miner Eng. 2018;125:34–41. DOI:10.1016/j.mineng.2018.03.032
  • Le TMK, Schreithofer N, Dahl O. Dissolution test protocol for estimating water quality changes in minerals processing plants operating with closed water circulation. Minerals. 2020;10:653. DOI:10.3390/min10080653
  • Kumpulainen S, Carlson L, Räisänen ML. Seasonal variations of ochreous precipitates in mine effluents in Finland. Appl Geochemistry. 2007;22:760–777. DOI:10.1016/j.apgeochem.2006.12.016
  • Praharaj T, Fortin D. Seasonal variations of microbial sulfate and iron reduction in alkaline Pb-Zn mine tailings (Ontario, Canada). Appl Geochemistry. 2008;23:3728–3740. DOI:10.1016/j.apgeochem.2008.09.008
  • Dold B. Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals. 2014;4:621–641. DOI:10.3390/min4030621
  • Alpers CN, Nordstrom DK, Thompson JM. Seasonal variations of Zn/Cu Ratios in acid mine water from Iron Mountain, California; 1993. p. 324–344. DOI:10.1021/bk-1994-0550.ch022
  • Pryor EJ. Mineral processing. New York: Elsevier Applied Science; 1965. DOI:10.1007/978-94-010-2941-4
  • Zhang J, Wei Z. Multi-scale investigation of applying secondary effluent in sulfde flotation. In: Water Miner. Process. – Proc. 1st Int. Symp.; Seattle; 2012. p. 279–290.
  • Fuerstenau M, Miller J, Kuhn M. Chemistry of flotation. New York: Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers; 1985.
  • Schubert H, Schneider V. О роли ассоциации аполярных групп при адсорбции собирателя [On the role of non-polar groups during collector adsorption]. In: VIII Int. Miner. Process. Congr. Leningrad (St. Petersburg): Izd. Instituta Mechanobr; 1969. p. 315–524. Russian.
  • Mitrofanov S. Селективная флотация [Selective flotation]. Moscow: Nerda; 1967. Russian.
  • Ignatova T, Shelepov E. Влияние температуры жидкой фазы пульпы на катионную доводку магнетитовых концентратов ОАО “Михайловский ГОК” [An influence of temperature of liquid phase of the pulp on cationic cleaner flotation of magnetite concentrates]. Min Informational Anal Bull. 2011;4:237–240. Russian.
  • Zhang X, Shao G, Wu P, et al. 氧化铅锌矿石低温浮选工艺研究 [Study on the flotation of lead-zinc oxide ore at low temperature]. Min Metall. 2003;12:21. Chinese.
  • Kulkarni RD, Somasundaran P. Flotation chemistry of hematite/oleate system. Colloids Surf. 1980;1:387–405. DOI:10.1016/0166-6622(80)80025-4
  • Cooke S, Iwasaki I, Choi HS. Effect of temperature on soap flotation of iron ore. Trans AIME. 1960;217:76–83. DOI:10.2118/65-04-09
  • Guo W, Han Y, Zhu Y, et al. Effect of amide group on the flotation performance of lauric acid. Appl Surf Sci. 2020;505. DOI:10.1016/j.apsusc.2019.144627
  • Parrent MD. Separation of pyrolusite and hematite by froth flotation [Master’s thesis]. Department of Chemical and Materials Engineering, University of Alberta; 2012.
  • Parkins E. Effect of temperature on the conditioning and flotation of an ilmenite ore [PhD thesis]. London University; 1975.
  • Carlos Silva A, Maria Schons Silva E, Emérito P, et al. Temperature influence in cornstarch gelatinization for froth flotation. Rem Int Eng J. 2017;70:231–235. DOI:10.1590/0370-44672016700085
  • Cai J, Liu D, Shen P, et al. Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation. Miner Eng. 2021;169:106956. DOI:10.1016/j.mineng.2021.106956
  • Tyushkova NI, Marasanova LV, Gorenkov NL. Research and developing of the technologies of oxidized Pb-Zn ores treatment. In: 26th Int. Miner. Process. Congr. IMPC 2012 Innov. Process. Sustain. Growth – Conf. Proc.; 2012. p. 5551–5555.
  • Yin W, Sun H, Tang Y, et al. Effect of pulp temperature on separation of magnesite from dolomite in sodium oleate flotation system. Physicochem Probl Miner Process. 2019;55:1049–1058. DOI:10.5277/ppmp19027
  • Miller J, Ackerman J. Bench scale flotation of alunite ore with oleic acid. In: Fine Part. Symp. New York: AIME; 1980. p. 832–852. DOI:10.1525/9780520959743-042
  • De Castro FHB, Borrego AG. The influence of temperature during flotation of celestite and calcite with sodium oleate and quebracho. Int J Miner Process. 1996;46:35–52. DOI:10.1016/0301-7516(95)00059-3
  • Batelaan JG, Van Ginkel CG, Balk F. Carboxymethylcellulose (CMC). Handb Environ Chem. 1992;3:329–336. DOI:10.1007/978-3-540-47108-0_11
  • Ofor O, Nwoko C. Oleate flotation of a Nigerian baryte: the relation between flotation recovery and adsorption density at varying oleate concentrations, pH, and temperatures. J Colloid Interface Sci. 1997;186:225–233. DOI:10.1006/jcis.1996.4501
  • Li S, Gong D, Zhang W, et al. Improving fluorite flotation under low temperature and neutral pH conditions. Surf Rev Lett. 2020;27. DOI:10.1142/S0218625X19501877
  • Taguta J, Teme KC, Ngobeni P. The role of gangue mineralogy on flowsheet development in fluorite processing. Minerals. 2020;10. DOI:10.3390/min10030237
  • Kienko L, Samatova L, Voronova O, et al. К проблеме снижения температуры флотации при обогащении карбонатно-флюоритовых руд [Addressing a problem of lowering a temperature of flotation during processing of carbonate-fluorite ores]. Fiz Probl Razrab Polezn Iskop. 2010;3:97–104. Russian.
  • Vigdergauz V, Trofimova E, Sarkisova L, et al. Низкотемпературная флотация флюорита эмульсией карбоксильного собирателя [Low-temperature fluorite flotation with carboxyl collector emulsion]. Горный Информационно-Аналитический Бюллетень. 2000;2:235–238. Russian.
  • Kienko L. Разработка эффективной технологии обогащения карбонатно-флюоритовых руд Вознесенского рудного района [Development of an efficient processing technology for carbonate-fluorite ores of the Voznesensky ore field] [PhD thesis]. Transbaikal State University; 2008. Russian.
  • Deng J, Zhu Y, Hu F, et al. 油酸低温下浮选萤石的研究 [Study on fluorite flotation with oleic acid at low temperature]. 化工矿山技术 [Chem Min Technol]. 1993;22:24–26. Chinese.
  • De Oliveira Baldoino R, Martins M, Rodrigues MVT, et al. Influence of temperature, water quality and collector type on flotation performance of a peruvian phosphate ore. In: 26th Int. Miner. Process. Congr. IMPC 2012 Innov. Process. Sustain. Growth – Conf. Proc.; 2012. p. 327–335.
  • Ruan Y, Zhang Z, Luo H, et al. Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector. Minerals. 2017;7:1–14. DOI:10.3390/min7050065
  • Zhang Y, Li D. 几种表面活性剂在磷矿低温浮选中的应用 [Application of surfactants in low temperature flotation of phosphate ore]. 化工矿物与加工 [IM P]. 2007;4:8–9. Chinese.
  • Ivanova V, Mitrofanova G, Perunkova T. Флотация апатито-нефелиновой руды жирокислотным собирателем на оборотной воде в условиях холодной пульпы [Flotation of apatite-nefeline ore with fatty acid collector and recycled waters under the conditions of cold pulp]. In: Gorn. Delo v Arktike. Apatity: Tipografia Ivan Fedorov; 2005. p. 294–299. Russian.
  • Ivanova V, Mitrofanova G. О роли смоляных кислот при флотации апатита талловыми маслами в условиях водооборота [About the role of resin acids during apatite flotation with tall oils and recycled water]. Вестник МГТУ. 2009;12:583–587. Russian.
  • Stén P, Parvinen P, Miettinen M, et al. On-line analysis of flotation process waters at Siilinjärvi (Finland) apatite concentrating plant. Miner Eng. 2003;16:229–236. DOI:10.1016/S0892-6875(03)00013-X
  • Oliazadeh M, Aghamirian M, Grammatikopoulos T, et al. An overview of potash flotation. In: 44th Annu. Meet. Can. Miner. Process.; 2012. p. 431–442.
  • Aliferova S. Активация процессов флотации шламов и сильвина при обогащении калийных руд [Activation of flotation processes for slimes and sylvite during potassium salt processing] [PhD thesis]. Ural State University; 2007. Russian.
  • Turko M, Dormeshkin O, Miskov E, et al. Флотация сильвина из калийных руд при повышенных температурах [Flotation of sylvite from potash ores at elevated temperatures]. Труды БГТУ Химия и Технология Неорганических Материалов и Веществ. 2014;3:71–77. Russian.
  • Essilfie E. Modification of amine collectors for low temperature flotation of potash [Master’s thesis]. Department of Mechanical Engineering, University of Saskatchewan; 2014.
  • Mehri A, Haghani M, Mozaffari E. Flotation of potash for carnallite resources in Khur playa of Iran using Jameson flotation cell. J Environ Anal Chem. 2019;6:2–9.
  • Perucca CF. Testing and evaluation of modifying reagents in potash flotation [Master’s thesis]. Department of Mining and Minerals Processing, University of British Columbia; 2000.
  • Bodnar R, Vityk M, Hryn J, et al. Phase Equilibria in the system H2O-NaCl-KCl-MgCl2 relevant to salt cake processing. In: 126th Annu. Meet. Miner. Met. Mater. Soc.; Orlando; 1997. p. 1–7.
  • Abu-Hamatteh ZSH, Al-Amr AM. Carnallite froth flotation optimization and cell efficiency in the arab potash company, dead Sea, Jordan. Miner Process Extr Metall Rev. 2008;29:232–257. DOI:10.1080/08827500801997894
  • Vahrushev V. Повышение эффективности процессов обесшламливания и выщелачивания в технологии получения хлорида калия из сильвинитовых руд Верхнекамского месторождения [Improving sylvinite desliming and leaching] [PhD thesis]. Kazan State Technological University; 2014. Russian.
  • Cheng FQ, Xue N, Cao B, et al. Experimental study on mixed amine collector for KCl flotation at low temperature. In: XXVI IMPC; New Delhi; 2012. p. 888–898.
  • European Commission. Study on the review of the list of Critical raw materials – final report, 2020. DOI:10.2873/11619
  • Pradip, Fuerstenau DW. The role of inorganic and organic reagents in the flotation separation of rare-earth ores. Int J Miner Process. 1991;32:1–22. DOI:10.1016/0301-7516(91)90016-C
  • Pradip. The surface properties and flotation of rare-earth minerals [PhD thesis]. University of California; 1981.
  • Schriner D. Advanced beneficiation of bastnaesite ore through centrifugal concentration and froth flotation [Master’s thesis]. Metallurgical and Materials Engineering, Colorado School of Mines; 2016.
  • Yang G. 稀土浮选工艺流程优化试验 [Possibility of improving flow sheet of rare earth flotation beneficiation]. Chinese Rare Earths. 2005;26:25–26. Chinese. DOI:10.16533/j.cnki.15-1099/tf.2005.01.019
  • Li M, Gao K, Zhang D, et al. The influence of temperature on rare earth flotation with naphthyl hydroxamic acid. J Rare Earths. 2018;36:99–107. DOI:10.1016/j.jre.2017.07.004
  • Xu J, Li F, Zeng X. 从尾矿中回收氟碳铈矿和独居石的浮选研究 [Flotation of bastnaesite and monazite in dressing plant tailing]. Chinese Rare Earths. 2006;27:67–72. Chinese.
  • Zeng X, Li F. 微山稀土矿选矿工艺研究 [Beneficiation technology for Wei Shan rare earth mine]. J Shanghai Second Polytech Univ. 1991;2:46–52. Chinese. DOI:10.19570/j.cnki.jsspu.1991.02.007
  • Ren H, Hu Y. 用水杨羟肟酸捕收剂从强磁中矿中选取高品位稀土精矿的研究 [Study on the selection of high grade rare-earth concentrates from high-intensity separation middlings with salicylhydroxamic acid as the collector]. Met Mine. 1996;245(11):20–22.
  • Metso. Sodium metasilicate: a soluble silicate for institutional and industrial cleaning; 2009. DOI:10.1007/978-3-642-41714-6_194967
  • Zhang Y. Froth flotation of xenotime [Master’s thesis]. Metallurgical and Materials Engineering, Colorado School of Mines; 2016.
  • Kupka N, Rudolph M. Froth flotation of scheelite – a review. Int J Min Sci Technol. 2018;28:373–384. DOI:10.1016/j.ijmst.2017.12.001
  • Samatova L, Shepeta E, Kondratjev S. Изучение флотационных свойств собирателя FX-6 при обогащении шеелит-сульфидных руд [Investigation of flotational properties of FX-6 collector during processing of scheelite-sulfide ores]. Физико-Технические Проблемы Разработки Полезных Ископаемых [Phys Tech Probl Miner Dev]. 2015;2:156–160. Russian.
  • Kang J, Chen C, Sun W, et al. A significant improvement of scheelite recovery using recycled flotation wastewater treated by hydrometallurgical waste acid. J Clean Prod. 2017;151:419–426. DOI:10.1016/j.jclepro.2017.03.073
  • Kang J, Hu Y, Sun W, et al. Utilisation of FGD gypsum for silicate removal from scheelite flotation wastewater. Chem Eng J. 2018;341:272–279. DOI:10.1016/j.cej.2018.02.043
  • Li J, Sun X, Zhang D, et al. 某铜钨矿中白钨矿的低温浮选效果优化 [Optimization on low temperature floatation of scheelite from copper-tungsten ore]. Met Mine. 2014;9:56–59. Chinese.
  • Meng Q, Feng Q, Ou L. Effect of temperature on floatability and adsorption behavior of fine wolframite with sodium oleate. J Cent South Univ. 2018;25:1582–1589. DOI:10.1007/s11771-018-3850-4
  • Glembotsky V, Dmitrieva G, Sorokin M. Аполярные реагенты и их действие при флотации [Non-polar reagents and their application in flotation]. Moscow: Nayka; 1968. Russian.
  • Klassen V, Plaksin I. О механизме действия некоторых реагентов и аэрации пульпы при флотации каменных углей [About mechanism of action of some reagents during aeration in hard coal flotation]. Izv Akad Nauk SSSR Otd Teh Nauk. 1954;3. Russian.
  • Gayle J, Eddy W, Shotts R. Laboratory investigation of the effect of oxidation on coal flotation (bureau of mines report of investigations). Washington (DC): U.S. Dept. of the Interior, Bureau of Mines; 1965.
  • Li C, Xu M, Xing Y, et al. Efficient separation of fine coal assisted by surface nanobubbles. Sep Purif Technol. 2020;249:117163. DOI:10.1016/j.seppur.2020.117163
  • Chang G, Xing Y, Zhang F, et al. Effect of nanobubbles on the flotation performance of oxidized coal. ACS Omega. 2020;5:20283–20290. DOI:10.1021/acsomega.0c02154
  • Sun SC. Frothing characteristics of pine oils in flotation. Trans Am Inst Min Metall Eng. 1952;193:65–71.
  • Sun S, Chao T. Hypothesis for the effect of temperature on coal flotation. SME Annu. Meet. Am. Inst. Mining, Metall. Pet. Eng.; New York; 1966.
  • Gayle J, Eddy W. Laboratory investigation of the effect of temperature on coal flotation (bureau of mines report of investigations). Washington (DC): U.S. Dept. of the Interior, Bureau of Mines; 1961.
  • Hacifazlioğlu H, Gerdan GH. Taşkömürü Tozları Flotasyonunda Sıcaklığın Etkisi [Effect of temperature on fine hard coal flotation. Adıyaman Üniversitesi Mühendislik Bilim Derg. 2016;5:1–8. Turkish.
  • Bailey R, Whelan PF. The influence of pulp temperature on the froth flotation of four British fine coals. J Inst Fuel. 1953;25:304–307.
  • Menéndez M, Vidal A, Toraño J, et al. Optimisation of spodumene flotation. Eur J Miner Process Environ Prot. 2004;4:130–135.
  • Xu L, Hu Y, Tian J, et al. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Miner Eng. 2016;89:84–92. DOI:10.1016/j.mineng.2016.01.013
  • Liu G, Liu Z, Liu Y, et al. 一种钽铌尾矿浮选分离锂云母精矿的方法 [A method for concentrating lepidolite from tantalum-niobium tailings through flotation]. Chinese patent no. CN102151616A. 2011. Chinese. Available from: https://patents.google.com/patent/CN102151616A/zh
  • Ikumapayi F, Makitalo M, Johansson B, et al. Recycling process water in sulfide flotation, part A: effect of calcium and sulfate on sphalerite recovery. Miner Metall Process. 2012;29:183–191. DOI:10.1007/bf03402455
  • Kawatra SK. Froth flotation – fundamental principles. In: Min. Eng. Handb. Houghton: Michigan Technological University; 2009. p. 30.