Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 3
167
Views
3
CrossRef citations to date
0
Altmetric
Materials Processing, Characterization and Properties

Influence of titanium particulate reinforcement on microstructural evolution and mechanical performance of AZ91 magnesium matrix surface composite developed through friction stir processing

Influence du renforcement de particules de titane sur l'évolution microstructurale et les performances mécaniques du composite de surface à matrice de magnésium AZ91 développé par traitement par friction-malaxage

, ORCID Icon, &
Pages 779-792 | Received 18 Apr 2023, Accepted 14 Jul 2023, Published online: 25 Jul 2023

References

  • Patel V, Li W, Vairis A, et al. Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State Mater Sci. 2019;44(5):378–426. doi:10.1080/10408436.2018.1490251
  • Bharti S, Ghetiya ND, Patel KM. A review on manufacturing the surface composites by friction stir processing. Mater Manuf Process. 2021;36(2):135–170. doi:10.1080/10426914.2020.1813897
  • Bajakke PA, Malik VR, Deshpande AS. Particulate metal matrix composites and their fabrication via friction stir processing–a review. Mater Manuf Process. 2019;34(8):833–881. doi:10.1080/10426914.2019.1605181
  • Suneesh E, Sivapragash M. Comprehensive studies on processing and characterization of hybrid magnesium composites. Mater Manuf Process. 2018;33(12):1324–1345. doi:10.1080/10426914.2018.1453155
  • Chang CI, Wang YN, Pei HR, et al. Microstructure and mechanical properties of nano-ZrO2 and nano-SiO2 particulate reinforced AZ31-Mg based composites fabricated by friction stir processing. Key Eng Mater. 2007;351:114–119. doi:10.4028/www.scientific.net/KEM.351.114
  • Choudhary AK, Jain R. Fundamentals of friction stir welding, its application and recent advancements. In: Davim JP, editor. Welding technology. Springer, Cham; 2020. p. 1–44.
  • Hussain I, Immanuel RJ. Composite materials and its advancements for a cleaner engine of future. Singapore: Springer; 2021. doi:10.1007/978-981-16-8337-4
  • Sandeep KJ, Choudhary AK, Immanuel RJ. Microstructural characterization and mechanical performance of AZ91 magnesium alloy processed by friction stir processing using novel tool designs. J Mater Eng Perform. 2023. doi:10.1007/s11665-023-07980-9
  • Taghiabadi R, Moharami A. Mechanical properties enhancement of Mg–4Si in-situ composites by friction stir processing. Mater Sci Technol (United Kingdom). 2021;37(1):66–77. doi:10.1080/02670836.2020.1866848
  • Babu N, Megalingam A. Microstructural, mechanical and tribological characterization of ZrB2 reinforced AZ31B surface coatings made by friction stir processing. J Adhes Sci Technol. 2023;37(2):195–212. doi:10.1080/01694243.2022.2029093
  • Liu F, Ji Y, Sun Z, et al. Enhancing corrosion resistance of Al–Cu/AZ31 composites synthesized by a laser cladding and FSP hybrid method. Mater Manuf Process. 2019;34(13):1458–1466. doi:10.1080/10426914.2019.1661432
  • Khodabakhshi F, Nosko M, Gerlich AP. Dynamic restoration and crystallographic texture of a friction-stir processed Al–Mg–SiC surface nanocomposite. Mater Sci Technol (United Kingdom). 2018;34(14):1773–1791. doi:10.1080/02670836.2018.1490858
  • Vaira Vignesh R, Padmanaban R, Govindaraju M. Synthesis and characterization of magnesium alloy surface composite (AZ91D - SiO2) by friction stir processing for bioimplants. Silicon. 2020;12(5):1085–1102. doi:10.1007/s12633-019-00194-6
  • Satish Kumar T, Shalini S, Thankachan T. Friction stir processing based surface modification of AZ31 magnesium alloy. Mater Manuf Process. 2023;00(00):1–10. doi:10.1080/10426914.2023.2165670
  • Vaira Vignesh R, Padmanaban R, Govindaraju M, et al. Investigations on the corrosion behaviour and biocompatibility of magnesium alloy surface composites AZ91D-ZrO2 fabricated by friction stir processing. Trans Inst Met Finish. 2019;97(5):261–270. doi:10.1080/00202967.2019.1648005
  • Srivastava AK, Kumar N, Saxena A, et al. Effect of friction stir processing on microstructural and mechanical properties of lightweight composites and cast metal alloys – A review. Int J Cast Met Res. 2021;34(3–6):169–195. doi:10.1080/13640461.2021.2014667
  • Morishige T, Tsujikawa M, Hino M, et al. Microstructural modification of cast Mg alloys by friction stir processing. Int J Cast Met Res. 2008;21(1–4):109–113. doi:10.1179/136404608X361774
  • Wong WLE, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Compos Sci Technol. 2007;67(7–8):1541–1552. doi:10.1016/j.compscitech.2006.07.015
  • Hussain I, Immanuel RJ. High energy ball milling–an advanced processing route for effective development of titanium aluminide intermetallic alloy through mechanical alloying. Met Powders Rep. 2022;77(4).doi:10.12968/S0026-0657(22)70020-3
  • Wang N, Xiao Z, Li S, et al. Development of a novel Ni-based composite via in-situ reinforcement units formed by high-density hierarchical nanoscale precipitates. Mater Des. 2023;225:111554. doi:10.1016/j.matdes.2022.111554
  • Maweja K, Phasha M, van der Berg N. Microstructure and crystal structure of an equimolar Mg–Ti alloy processed by simoloyer high-energy ball mill. Powder Technol. 2010;199(3):256–263. doi:10.1016/j.powtec.2010.01.014
  • Ma ZYY. Friction stir processing technology: a review. Metall Mater Trans A. 2008;39(3):642–658. doi:10.1007/s11661-007-9459-0
  • Chen CF, Kao PW, Chang LW, et al. Effect of processing parameters on microstructure and mechanical properties of an Al–Al11Ce3–Al2O3 in-situ composite produced by friction stir processing. Metall Mater Trans A Phys Metall Mater Sci. 2010;41(2):513–522. doi:10.1007/s11661-009-0115-8
  • Hussain I. Development and performance studies of a lightweight AA6061/Ti particulate surface composite through friction stir processing. 2023, No. May. doi:10.4271/2023-28-1303.Received
  • Asadi P, Givi MKB, Abrinia K, et al. Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP. J Mater Eng Perform. 2011;20(9):1554–1562. doi:10.1007/s11665-011-9855-x
  • Faraji G, Asadi P. Characterization of AZ91/alumina nanocomposite produced by FSP. Mater Sci Eng A. 2011;528(6):2431–2440. doi:10.1016/j.msea.2010.11.065
  • Jamshidijam M, Akbari-Fakhrabadi A, Masoudpanah SM, et al. Wear behavior of multiwalled carbon nanotube/AZ31 composite obtained by friction stir processing. Tribol Trans. 2013;56(5):827–832. doi:10.1080/10402004.2013.804969
  • García-Vázquez F, Vargas-Arista B, Muñiz R, et al. The role of friction stir processing (FSP) parameters on TiC reinforced surface Al7075-T651 aluminum alloy. Soldag e Insp. 2016;21(4):508–516. doi:10.1590/0104-9224/si2104.10
  • Vaira Vignesh R, Padmanaban R, Govindaraju M, et al. Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing. Mater Res Express. 2019;6(8). doi:10.1088/2053-1591/ab1ded
  • Nan X, Bo-Kun G, Yue F, et al. Microstructure and mechanical properties of a double-pass friction stir processed AZ31B magnesium alloy. Mater Sci Technol (United Kingdom). 2023;39(2):168–176. doi:10.1080/02670836.2022.2105501
  • Simar A, Mertens A, Ryelandt S, et al. Mean-Field model analysis of deformation and damage in friction stir processed Mg–C composites. Mater Sci Eng A. 2018;723:324–333. doi:10.1016/j.msea.2018.03.043
  • Rathee S, Maheshwari S, Siddiquee AN, et al. Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy. Mater Manuf Process. 2018;33(3):262–269. doi:10.1080/10426914.2017.1303147
  • Bagheri B, Abbasi M, Abdollahzadeh A, et al. A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites. Int J Miner Metall. Mater. 2020;27(8):1133–1146. doi:10.1007/s12613-020-1993-4
  • Bagheri B, Abdollahzadeh A, Sharifi F, et al. The role of vibration and pass number on microstructure and mechanical properties of AZ91/SiC composite layer during friction stir processing. Proc Inst Mech Eng Part C J Mech Eng Sci. 2022;236(5):2312–2326. doi:10.1177/09544062211024281
  • Liu ZY, Xiao BL, Wang WG, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon N Y. 2012;50(5):1843–1852. doi:10.1016/j.carbon.2011.12.034
  • Shahani RA, Clyne TW. Recrystallization in fibrous and particulate metal matrix composites. Mater Sci Eng A. 1991;135(C):281–285. doi:10.1016/0921-5093(91)90576-9
  • Choudhary AK, Jain R. Numerical prediction of various defects and their formation mechanism during friction stir welding using coupled eulerian-lagrangian technique. Mech Adv Mater Struct. 2022;30(12):2371–2384. doi:10.1080/15376494.2022.2053911
  • Abdollahzadeh A, Bagheri B, Shamsipur A. Development of Al/Cu/SiC bimetallic nano-composite by friction stir spot welding. Mater Manuf Process. 2022;38(11):1416–1425. doi:10.1080/10426914.2022.2157435
  • Malik VR, Bajakke PA, Jambagi SC, et al. Investigating mechanical and corrosion behavior of plain and reinforced AA1050 sheets fabricated by friction stir processing. Jom. 2020;72(10):3582–3593. doi:10.1007/s11837-020-04323-0
  • Seetharam R, Subbu SK, Davidson MJ, et al. Influence of reinforcement particles on dynamically recrystallized grain of Hot upset sintered Al-B4C composites. J Mater Eng Perform. 2022;31(11):9083–9096. doi:10.1007/s11665-022-06955-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.