Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 3
71
Views
0
CrossRef citations to date
0
Altmetric
Extractive Pyrometallurgy – Ferrous

Enhancement of hybrid combustion of semi-coke and bituminous coal by rare earth oxides

, , , &
Pages 947-956 | Received 06 May 2023, Accepted 14 Jul 2023, Published online: 18 Aug 2023

References

  • Zhao J, Zuo H, Ling C, et al. Microstructure evolution of coke under CO2 and H2O atmospheres. Iron Steel Res Int. 2020;27:743–754. doi:10.1007/s42243-019-00326-7
  • Yao Y, Zhu J, Lu Q. Experimental study on nitrogen transformation in combustion of pulverized semi-coke preheated in a circulating fluidized bed. Energy Fuels. 2015;29:3985–3991. doi:10.1021/acs.energyfuels.5b00791
  • Katalambula H, Gupta R. Low-Grade coals: a review of some prospective upgrading technologies†. Energy Fuels. 2009;23:3392–3405. doi:10.1021/ef801140t
  • Yao H, He B, Ding G, et al. Thermogravimetric analyses of oxyfuel co-combustion of semi-coke and bituminous coal. Appl Therm Eng. 2019;156:708–721. doi:10.1016/j.applthermaleng.2019.04.115
  • Yang G, Yang Z, Zhang J, et al. Combustion characteristics and kinetics study of pulverized coal and semi-coke. De Gruyter. 2019;38:783–791. doi:10.1515/htmp-2019-0034
  • Wang C, Wang C, Jia X, et al. Experimental investigation on combustion characteristics and kinetics during Co-firing bituminous coal with ultra-low volatile carbon-based solid fuels. J Energy Inst. 2021;95:87–100. doi:10.1016/j.joei.2021.01.005
  • Wang P, Wang C, Yuan M, et al. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere – ScienceDirect. Appl Energy. 2020;260:114–203. doi:10.1016/j.apenergy.2019.114203
  • Sun B, Wang Q, Shen P, et al. Kinetic analysis of co-combustion of oil shale semi-coke with bituminous coal. Oil Shale. 2012;29:63–75. doi:10.3176/oil.2012.1.06
  • Sun B, Shi X, Huang Z, et al. Experimental investigation on combustion characteristics of oil shale semi-coke and bituminous coal blends. J Northeast Dianli Univ. 2012;35:476–480. doi:10.1016/S1876-3804(11)60004-9
  • Zheng S, Hu Y, Wang Z, et al. Experimental investigation on ignition and burnout characteristics of semi-coke and bituminous coal blends. J Energy Inst. 2020;93:1373–1381. doi:10.1016/j.joei.2019.12.007
  • Yang S, Guo S, Wang M. Experimental research of semi-coke for blast furnace injection. Energy Metall Ind. 2015: 33–37. doi:10.3969/j.issn.1001-1617.2015.05.010
  • Zhang H, Zhang J, Cheng R, et al. Combustion characteristics and mechanism analysis of blended coal of semi-coke and bituminous coal. China Metall. 2016;26:7–12. doi:10.13228/j.boyuan.issn1006-9356.20150077
  • Bi C, Huang C, Ling X, et al. Best ratio of semi-coke for blast furnace injection. Iron Steel. 2020;55:25–32. doi:10.13228/j.boyuan.issn0449-749x.20190382
  • Gopalakrishnan R, Bartholomew C. Effects of CaO, high-temperature treatment, carbon structure, and coal rank on intrinsic char oxidation rates. Energy Fuels. 1996;10:689–695. doi:10.1021/ef950172v
  • Hu Y, Wang Z, Cheng X, et al. Effects of catalysts on combustion characteristics and kinetics of coal-char blends. Asia Conference on Energy And Environment Engineering. 2018;133:012023. doi:10.1088/1755-1315/133/1/012023
  • Ma B, Li X, Xu L. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochim Acta. 2006;445:19–22. doi:10.1016/j.tca.2006.03.021
  • Zhang L, Tan Z, Wang S. Combustion calorimetric and thermogravimetric studies of graphite and coals doped with a coal-burning additive. Thermochim Acta. 1997;299:13–17. doi:10.1016/S0040-6031(97)00130-5
  • Lin G. Study on the effect of Fe2O3 on the combustion process of blast furnace coal injection. Dissertation for the master degree. KunMing: Kunming University of Science and Technology; 2016.
  • Gong X, Guo Z, Wang Z. Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3. Combust Fuel. 2010;157:351–356. doi:10.1016/j.combustflame.2009.06.025
  • Gong X, Guo Z, Wang Z. Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by Differential Thermal Analysis (DTA). Energy. 2010;35:506–511. doi:10.1016/j.energy.2009.10.017
  • Xu Y, Kou Y. Application of rare earth oxides as catalyst on pulverized coal in blast furnace and catalytic mechanism. J Chin Soc Rare Earths. 2009;5:635–640. doi:10.1109/MILCOM.2009.5379889
  • Moon C, Sung Y, Ahn S, et al. Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion. Appl Therm Eng. 2013;54:111–119. doi:10.1016/j.applthermaleng.2013.01.009
  • Wang C, Liu Y, Zhang X, et al. A study on coal properties and combustion characteristics of blended coals in northwestern China. Energy Fuels. 2011;25:3634–3645. doi:10.1021/ef200686d
  • Zhou C. Mechanism of intensified combustion of PCI coal by catalysts and its fundamental research for application in blast furnace. Dissertation for the doctoral degree. ChongQing: Chongqing University; 2014.
  • Ozawa T. A New method of analyzing thermo-gravimetric data. Bull Chem Soc Jpn 1965;38:1881–1886. doi:10.1246/bcsj.38.1881
  • Flynn J, Wall L. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci A. 1966;4:323–328. doi:10.1002/pol.1966.110040504
  • Sanchez M, Otero M, Gomez X, et al. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energy. 2009;34:1622–1627. doi:10.1016/j.renene.2008.11.011
  • Chen C, Ma X, Kai X. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl Energy. 2011;88:3189–3196. doi:10.1016/j.apenergy.2011.03.003
  • Zhang J, Wei G, Xing X, et al. Combustion characteristics and kinetics of pulverized coal in oxygen-enriched environments. J Iron Steel Res. 2013;25:43–47. doi:10.13228/j.boyuan.issn1001-0963.2013.04.001
  • Liu X, Chang F, Wang C, et al. Pyrolysis and subsequent direct combustion of pyrolytic gases for sewage sludge treatment in China. Appl Therm Eng. 2018;128:464–470. doi:10.1016/j.applthermaleng.2017.08.091
  • Wang Z, Hong C, Xing Y, et al. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: with and without catalysts. Waste Manage. 2018;74:288–296. doi:10.1016/j.wasman.2018.01.002
  • Wang C, Feng Q, Mao Q, et al. Oxy-fuel co-combustion performances and kinetics of bituminous coal and ultra-low volatile carbon-based fuels. Int J Energy Res. 2021;45:1892–1907. doi:10.1002/er.5871
  • Deng J, Li Q, Zhang N, et al. Experimental study of coal adsorbing oxygen characteristic. Safety In Coal Mines. 2011;42:7–10. doi:10.1587/transele.E94.C.1422
  • Gao L. TGA study on modified oxygen adsorption of coal samples with different ranks. Coal Qual Technol. 2022;37:77–83.
  • Wang M, Cang D, Wang R. Study on the effects of a new additive on coal combustion by TG-DTA. Energy Metall Ind. 2008;27(2).
  • Puente G, Marb G, Fuente E, et al. Modelling of volatile product evolution in coal pyrolysis. The role of aerial oxidation. J Anal Appl Pyrol. 1998;44:205–218. doi:10.1016/S0165-2370(97)00078-8
  • Chao T, Yang X, Chen G, et al. Experimental investigation for the combustion characteristics of blends of three kinds of coal. Fuel. 2021;300:120937. doi:10.1016/j.fuel.2021.120937
  • Zhang H, Dou B, Li J, et al. Thermogravimetric kinetics on catalytic combustion of bituminous coal. J Energy Inst. 2020;93:2526–2535. doi:10.1016/j.joei.2020.08.012
  • Cui X, Wang J, Cao J, et al. Effect of A-site disubstituted of lanthanide perovskite on catalytic activity and reaction kinetics analysis of coal combustion. Fuel. 2020;260:116380. doi:10.1016/j.fuel.2019.116380
  • Liu M, Feng S, Li J. Effect of CeO2 and MgO on coal combustion rate for blast furnace powder. Henan Metallurgy. 2020;28:20–22. 49
  • Qin H, Wang W, Liu H, et al. Thermal behavior research for co-combustion of furfural residue and oil shale semi-coke. Appl Therm Eng. 2017;120:19–25. doi:10.1016/j.applthermaleng.2017.03.111
  • Wu J, Wang B, Cheng F. Thermal and kinetic characteristics of combustion of coal sludge. J Therm Anal Calorim. 2017;129:1899–1909. doi:10.1007/s10973-017-6341-1
  • Yan D, Li M, Zou L, et al. A study on fragmentation and emissions characteristics during combustion of injected pulverized coal. Fuel. 2022;309:112152. doi:10.1016/J.FUEL.2021.122152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.