Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 3
133
Views
0
CrossRef citations to date
0
Altmetric
Extractive Pyrometallurgy – Nonferrous

Development of hydrogen reduction method for La–Fe–Si materials from oxalate precursors

, , &
Pages 915-926 | Received 01 May 2023, Accepted 24 Jul 2023, Published online: 03 Aug 2023

References

  • Rhyne J, McGuire T. Magnetism of rare-earth elements, alloys, and compounds. IEEE Trans Magn. 1972;8:105–130. doi:10.1109/TMAG.1972.1067267
  • Gupta S, Suresh KG. Review on magnetic and related properties of RTX compounds. J Alloys Compd. 2015;618:562–606. doi:10.1016/j.jallcom.2014.08.079
  • Suli LM, Ibrahim WHW, Aziz BA, et al. A review of rare earth mineral processing technology. Chem Eng Res Bull. 2017;19:20. doi:10.3329/cerb.v19i0.33773
  • IEA, Demand for rare earth elements from wind in the sustainable development scenario 2020-2040, IEA; 2022. [accessed 2023 May 1]. https://www.iea.org/data-and-statistics/charts/demand-for-rare-earth-elements-from-wind-in-the-sustainable-development-scenario-2020-2040
  • Charalampides G, Vatalis KI, Apostoplos B, et al. Rare earth elements: industrial applications and economic dependency of Europe. Proced Econ Finance. 2015;24:126–135. doi:10.1016/S2212-5671(15)00630-9
  • Suli LM, Ibrahim WHW, Aziz BA, et al. Critical Materials Strategy, U.S. Department of Energy; 2011. [accessed 2023 March 5]. https://www.energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf
  • Zhang Y, Peak neodymium - material constraints for future wind power development [master’s thesis]. Uppsala University; 2013. [accessed 2023 March 5]. https://www.diva-portal.org/smash/get/diva2:668091/FULLTEXT01.pdf
  • Haque N, Hughes A, Lim S, et al. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources. 2014;3:614–635. doi:10.3390/resources3040614
  • Stauffer PH, Hendley JW, Rare Earth Elements—Critical Resources for High Technology, Rare Earth Elements—Critical Resources for High Technology; 2005. [Accessed 2023 March 5]. https://pubs.usgs.gov/fs/2002/fs087-02/
  • Coey JMD. Hard magnetic materials: A perspective. IEEE Trans Magn. 2011;47:4671–4681. doi:10.1109/TMAG.2011.2166975
  • De Campos MF, Rodrigues D, De Castro JA, From neodymium oxide to NdFeB alloy: an overview on the reduction methods. 2014. doi:10.13140/RG.2.1.3487.0807
  • Brown D, Ma B-M, Chen Z. Developments in the processing and properties of NdFeb-type permanent magnets. J Magn Magn Mater. 2002;9:432–440. doi:10.1016/S0304-8853(02)00334-7.
  • Hickling H, Coleman DS. Sintering of fine iron powders produced from ferrous oxalate dihydrate. Powder Metall. 1982;25:25–34. doi:10.1179/pom.1982.25.1.25
  • Josso P, Roberts S, Teagle DAH, et al. Extraction and separation of rare earth elements from hydrothermal metalliferous sediments. Miner Eng. 2018;118:106–121. doi:10.1016/j.mineng.2017.12.014
  • Bandara HMD, Field KD, Emmert MH. Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem. 2016;18:753–759. doi:10.1039/C5GC01255D
  • Habashi F. Extractive metallurgy of rare earths. Can Metall Q. 2013;52:224–233. doi:10.1179/1879139513Y.0000000081
  • Anderson CD, Anderson CG, Taylor PR. Survey of recycled rare earths metallurgical processing. Can Metall Q. 2013;52:249–256. doi:10.1179/1879139513Y.0000000091
  • Balakrishna AR, James RD, Design of soft magnetic materials; 2021. [accessed 2023 May 1]. http://arxiv.org/abs/2111.05456
  • Lionte S, Barcza A, Risser M, et al. LaFeSi-based magnetocaloric material analysis: cyclic endurance and thermal performance results. Int J Refrig. 2021;124:43–51. doi:10.1016/j.ijrefrig.2020.12.004
  • Gȩbara P, Pawlik P, Kulej E, et al. The evolution of microstructure in annealed LaFeSi-type alloys. Opt Appl. 2009;39:761–764. https://opticaapplicata.pwr.edu.pl/article.php?id=2009400761
  • Niitsu K, Fujieda S, Fujita A, et al. Microstructure and magnetic properties of as-quenched cubic and tetragonal La(Fe1−xSix)13 compounds. J Alloys Compd. 2013;578:220–227. doi:10.1016/j.jallcom.2013.05.059
  • Niitsu K, Kainuma R. Phase equilibria in the Fe–La–Si ternary system. Intermetallics. 2012;20:160–169. doi:10.1016/j.intermet.2011.06.005
  • Jia L, Sun JR, Shen J, et al. Influence of interstitial and substitutional atoms on the crystal structure of La(FeSi)13. J Alloys Compd. 2011;509:5804–5809. doi:10.1016/j.jallcom.2011.02.124
  • Wang S, Xing P, Gao S, et al. Effect of in-situ formed CrB2 on pressureless sintering of B4C. Ceram Int. 2018;44:20367–20374. doi:10.1016/j.ceramint.2018.08.028
  • Mu L, Huang J, Zhang W, et al. Influence of partial substitution of cerium for lanthanum on magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides. J Rare Earths. 2014;32:1135–1139. doi:10.1016/S1002-0721(14)60194-0
  • Kagathara J, Wieland S, Gärtner E, et al. Heat treatment and formation of magnetocaloric 1:13 phase in LaFe11.4Si1.2Co0.4 processed by laser beam melting. Materials (Basel). 2020;13:773. doi:10.3390/ma13030773
  • Zhang T, Wang C, Li L, et al. Mass production of magnetocaloric LaFeMnSiB alloys with hydrogenation. J Iron Steel Res Int. 2017;24:462–468. doi:10.1016/S1006-706X(17)30070-5
  • Liu T, Chen Y, Tang Y, et al. Structure and magnetic properties of shortly high temperature annealing LaFe11.6Si1.4 compound. J Alloys Compd. 2009;475:672–675. doi:10.1016/j.jallcom.2008.07.139
  • Purwani MV, Suyanti S, Adi WA. Thermal decomposition kinetics of lanthanum oxalate hydrate product treatment from monazite. J Sains Mater Indones. 2019;20:50. doi:10.17146/jsmi.2019.20.2.5295
  • Gallagher SA, Dworzak WR. Thermodynamic properties of cerium oxalate and cerium oxide. J Am Ceramic Soc. 1985;68:C-206–C–207. doi:10.1111/j.1151-2916.1985.tb10185.x
  • Subba Rao VV, Rao RVG, Biswas AB. Thermogravimetric analysis of La, Ce, Pr and Nd oxalates in air and in carbon dioxide atmosphere. J Inorg Nucl Chem. 1965;27:2525–2531. doi:10.1016/0022-1902(65)80152-X
  • Richardson JF, Harker JH, Backhurst JR. Chapter 4 - flow of fluids through granular beds and packed columns. In: JF Richardson, JH Harker, JR Backhurst, editor. Chemical engineering. 5th ed. Oxford: Butterworth-Heinemann; 2002. p. 191–236. doi:10.1016/B978-0-08-049064-9.50015-1
  • Nicholson GC. The thermal decomposition of ferrous oxalate dihydrate. J Inorg Nucl Chem. 1967;29:1599–1604. doi:10.1016/0022-1902(67)80202-1
  • Hermanek M, Zboril R, Mashlan M, et al. Thermal behaviour of iron(ii) oxalate dihydrate in the atmosphere of its conversion gases. J Mater Chem. 2006;16:1273. doi:10.1039/b514565a
  • Almeida LD, Grandjean S, Vigier N, et al. New insights on the thermal decomposition of lanthanide(III) and actinide(III) oxalates: from neodymium and cerium to plutonium; n.d.
  • Aguilar-Martínez JA, Pech-Canul MI, Leyva-Porras C, et al. Effect of Co3O4 content and compaction pressure on the microstructure and electric properties of SnO2–Sb2O5–Cr2O3 varistor ceramics. Ceram Int. 2013;39:8237–8243. doi:10.1016/j.ceramint.2013.04.008
  • Aguilar-Martínez JA, Esneider-Alcala MA, Hernández MB, et al. Optimal parameters for synthesizing single phase spinel-type Co2SnO4 by sol–gel technique: structure determination and microstructure evolution. J Alloys Compd. 2013;574:278–282. doi:10.1016/j.jallcom.2013.05.146
  • Yang J, Shao Y, Zhang M, et al. The influence of Ce on microstructure, phase formation and magnetocaloric properties in off-stoichiometric La2-xCexFe11Si2 alloys. Intermetallics. 2018;103:97–100. doi:10.1016/j.intermet.2018.10.002
  • Xue Z, Li X, Sohrabi S, et al. Magnetic properties in finemet-type soft magnetic toroidal cores annealed under radial stresses. Metals (Basel). 2020;10:122. doi:10.3390/met10010122
  • Phejar M, Paul-Boncour V, Bessais L. Structural and magnetic properties of magnetocaloric LaFe13–xSix compounds synthesized by high energy ball-milling. Intermetallics. 2010;18:2301–2307. doi:10.1016/j.intermet.2010.07.022
  • Ho TA, Lim SH, Kim CM, et al. Magnetic and magnetocaloric properties of La 0.6 Ca 0.4−x Ce x MnO 3. J Magn Magn Mater. 2017;438:52–59. doi:10.1016/j.jmmm.2017.04.038
  • Conner BS, McGuire MA, Shanavas KV, et al. Evolution of structural and magnetic properties in LaxCe2-xCo16Ti for 0 ≤x ≤ 2. J Alloys Compd. 2017;695:2266–2272. doi:10.1016/j.jallcom.2016.11.078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.