Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 63, 2024 - Issue 3
439
Views
0
CrossRef citations to date
0
Altmetric
Extractive Hydrometallurgy

Pulse ultrasonication leaching approach for selective Li leaching from spent LFP cathode material

Approche de lixiviation par ultrasons pulsés pour la lixiviation sélective du Li à partir de matériau de cathode LFP usé

, , , &
Pages 857-869 | Received 02 Jun 2023, Accepted 26 Jul 2023, Published online: 07 Aug 2023

References

  • Xu C, Dai Q, Gaines L, et al. Future material demand for automotive lithium-based batteries. Commun Mater. 2020;1(1):99. doi:10.1038/s43246-020-00095-x
  • Ioakimidis C, Murillo-Marrodán A, Bagheri A, et al. Life cycle assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios. Sustain. 2019;11(9):2527. doi:10.3390/su11092527
  • Vasconcelos DDS, Tenório JAS, Botelho Junior AB, et al. Circular recycling strategies for LFP batteries: a review focusing on hydrometallurgy sustainable processing. Metals (Basel). 2023;13(3):543. doi:10.3390/met13030543
  • Wang M, Liu K, Dutta S, et al. Recycling of lithium iron phosphate batteries: status: technologies, challenges, and prospects. Renewable Sustainable Energy Rev. 2022;163:112515. doi:10.1016/j.rser.2022.112515
  • Lander L, Cleaver T, Rajaeifar MA, et al. Financial viability of electric vehicle lithium-ion battery recycling. iScience. 2021;24(7):102787. doi:10.1016/j.isci.2021.102787
  • Yao Y, Zhu M, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustainable Chem. Eng. 2018;6(11):13611–13627. doi:10.1021/acssuschemeng.8b03545
  • Jiao M, Zhang Q, Ye C, et al. Recycling spent LiNi1-x-y MnxCoy O2 cathodes to bifunctional NiMnCo catalysts for zinc-air batteries. Proc Natl Acad Sci USA 2022;119(20):e2202202119. doi:10.1073/pnas.2202202119
  • Ciez RE, Whitacre JF. Examining different recycling processes for lithium-ion batteries. Nat Sustain. 2019;2(2):148–156. doi:10.1038/s41893-019-0222-5
  • Li L, Dunn JB, Zhang XX, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J Power Sources. 2013;233:180–189. doi:10.1016/j.jpowsour.2012.12.089
  • Santos MPD, Garde IAA, Ronchini CMB, et al. A technology for recycling lithium-ion batteries promoting the circular economy: the RecycLib. Resour Conserv Recycl. 2021;175:105863. doi:10.1016/j.resconrec.2021.105863
  • He K, Zhang Z-Y, Zhang F-S. Selectively peeling of spent LiFePO4 cathode by destruction of crystal structure and binder matrix for efficient recycling of spent battery materials. J Hazard Mater. 2020;386:121633. doi:10.1016/j.jhazmat.2019.121633
  • Yu W, Guo Y, Xu S, et al. Comprehensive recycling of lithium-ion batteries: fundamentals, pretreatment, and perspectives. Energy Storage Mater. 2023;54:172–220. doi:10.1016/j.ensm.2022.10.033
  • Larouche F, Tedjar F, Amouzegar K, et al. Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond. Materials (Basel). 2020;13(3):801. doi:10.3390/ma13030801
  • Li H, Xing S, Liu Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO 4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustainable Chem Eng. 2017;5(9):8017–8024. doi:10.1021/acssuschemeng.7b01594
  • Wu D, Wang D, Liu Z, et al. Selective recovery of lithium from spent lithium iron phosphate batteries using oxidation pressure sulfuric acid leaching system. T Nonferr Metal Soc. 2022;32(6):2071–2079. doi:10.1016/S1003-6326(22)65931-4
  • Tao S, Li J, Wang L, et al. A method for recovering Li3PO4 from spent lithium iron phosphate cathode material through high-temperature activation. Ionics. 2019;25(12):5643–5653. doi:10.1007/s11581-019-03070-w
  • Uysal E, Al S, Emil-Kaya E, et al. Hydrometallurgical recycling of waste NdFeB magnets: design of experiment: optimisation of low concentrations of sulphuric acid leaching and process analysis. Can Metall Q. 2022: 1–12. doi:10.1080/00084433.2022.2058152
  • Zhu S, Zhou H, Miyoshi T, et al. Self-Assembly of the mesoporous electrode material Li3Fe2(PO4)3 using a cationic surfactant as the template. ChemInform. 2005;36(10). doi:10.1002/chin.200510019
  • Kuk Y, Hwang J, Nam D, et al. Facile synthesis of high-performance LiFePO4-reduced graphene oxide composites using ball milling. Ionics. 2020;26(6):2803–2812. doi:10.1007/s11581-019-03395-6
  • Burba CM, Frech R. Raman and FTIR spectroscopic study of Li[Sub x]FePO[Sub 4] (0≤x≤1). J Electrochem Soc 2004;151(7):A1032. doi:10.1149/1.1756885
  • Salah A, Jozwiak A, Zaghib P, et al. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim Acta, Part A. 2006;65(5):1007–1013. doi:10.1016/j.saa.2006.01.019
  • Bozkurt G. Synthesis and characterization of α-Fe2O3 nanoparticles by microemulsion method. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020;13(2):890–897. doi:10.18185/erzifbed.742160
  • Jraba N, Tounsi H, Makhlouf T. Valorization of aluminium chips into γ-Al2O3 and η-Al2O3 with high surface areas via the precipitation route. Waste Biomass Valor. 2018;9(6):1003–1014. doi:10.1007/s12649-016-9786-8
  • Wu Y, Xu P, Li L. Synthesis of alumina with coarse particle by precipitating aluminium ammonium sulfate solution with ammonia. Adv Powder Technol. 2016;27(1):124–129. doi:10.1016/j.apt.2015.11.006
  • Mukhamed’yarova AN, Gareev BI, Nurgaliev DK, et al. A review on the role of amorphous aluminium compounds in catalysis: avenues of investigation and potential application in petrochemistry and oil refining. Processes. 2021;9(10):1811. doi:10.3390/pr9101811
  • Yang Y, Meng X, Cao H, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chem 2018;20(13):3121–3133. doi:10.1039/C7GC03376A
  • Li L, Bian Y, Zhang X, et al. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Manage. 2019;85:437–444. doi:10.1016/j.wasman.2019.01.012
  • Kumar J, Shen X, Li B, et al. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manage. 2020;113:32–40. doi:10.1016/j.wasman.2020.05.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.